K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 9 2017

\(A=\frac{x^2+15}{x^2+3}=\frac{x^2+3}{x^2+3}+\frac{12}{x^2+3}=1+\frac{12}{x^2+13}\)

ĐỂ A ĐẠT GTLN <=> \(\frac{12}{x^2+3}\)ĐẠT GTLN <=> \(x^2+3\)PHẢI ĐẠT GTNN

XÉT \(\frac{12}{x^2+3}\)CÓ: \(x^2\ge0\Rightarrow x^2+3\ge3\)DẤU "=" XẢY RA <=> \(x=0\)

TẠI x=0 => \(\frac{12}{x^2+3}=\frac{12}{3}=4\)

=> MaxA=1+4=5 khi x=0

15 tháng 9 2017

cảm ơn nhé

14 tháng 3 2016

x=3/2 thì biểu thúc đạt giá trị lớn nhất là 6,5

x=0 thì biểu thức C là số tự nhiên

14 tháng 3 2016

giải rõ ra đc ko bạn

29 tháng 7 2019

a) Ta có: 2|x + 2| \(\ge\)\(\forall\)x

=> 2|x + 2| + 15 \(\ge\)15 \(\forall\)x

Hay A \(\ge\)15 \(\forall\)x

Dấu "=" xảy ra <=>x + 2 = 0 <=> x = -2

Vậy Min A = 15 tại x = -2

b) Ta có: 2(x + 5)4 \(\ge\)\(\forall\)x

         3|x + y + 2| \(\ge\)\(\forall\)x;y

=> 20 - 2(x + 5)4 - 3|x + y + 2| \(\le\)20 \(\forall\)x;y

Hay B \(\le\)20 \(\forall\)x;y

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x+5=0\\x+y+2=0\end{cases}}\) <=> \(\hept{\begin{cases}x=-5\\y=-2-x\end{cases}}\) <=> \(\hept{\begin{cases}x=-5\\y=-2-\left(-5\right)=3\end{cases}}\)

Vậy Max B = 20 tại x = -5 và y = 3

24 tháng 8 2016

Với mọi x thì A= |x+5/8 \(\ge\)0 .

Dấu ''='' xảy ra khi và chỉ khi x+5/8= o \(\Leftrightarrow\)x= -5/8.

Vậy GTNN (A)= 0 khi x= -5/8.

24 tháng 8 2016

Ta có:

\(A=\left|x+\frac{5}{8}\right|\ge0\)

Dấu "=" xảy ra khi và chỉ khi x = -5/8

Vậy Min A = 0 khi và chỉ khi x = -5/8

21 tháng 10 2017

A chỉ có giá trị lớn nhất khi |x+1|=0

\(\Rightarrow\)x = -1

ta có : A =\(\frac{15\left|x+1\right|+32}{6\left|x+1\right|+8}\)=\(\frac{15\left|-1+1\right|+32}{6\left|-1+1\right|+8}\)=\(\frac{15.0+32}{6.0+8}\)=\(\frac{32}{8}\)=4

Vậy giá trị lớn nhất của A là 4

2 tháng 11 2017

A= 4 nha bạn.

8 tháng 4 2017

\(-5x-x^2-20\)

\(\Rightarrow-x^2-5x-20\)

\(\Rightarrow-\left(x^2+5x+20\right)\)

\(\Rightarrow-\left(x^2+2.x.\frac{5}{2}+\frac{25}{4}+\frac{55}{4}\right)\)

\(\Rightarrow-\left(x^2+2.x.\frac{5}{2}+\frac{25}{4}\right)-\frac{55}{4}\)

\(\Rightarrow-\left(x+\frac{5}{2}\right)^2-\frac{55}{4}\)

Ta có \(-\left(x+\frac{5}{2}\right)^2\le0\)

\(\Rightarrow-\left(x+\frac{5}{2}\right)^2-\frac{55}{4}\le-\frac{55}{4}\)

Vậy \(-5x-x^2-20\) có GTLN là \(-\frac{55}{4}\)

Khi \(\left(x+\frac{5}{2}\right)^2=0\)\(\Rightarrow x+\frac{5}{2}=0\)\(\Rightarrow x=-\frac{5}{2}\)

3 tháng 5 2018

 Bmax khi (x-6)^2 +3 = 3

          <=>(x-6)^2 = 0

            =>x-6 = 0

            =>x = 6

lúc đó B=1/3

vậy Bmax=1/3 khi x=6

nếu thấy sai thi bạn kiểm tra hộ mình cái đề nha!!!(^_^)

            

3 tháng 5 2018

1/1=1