cho x+y=1,x.y=5 tinh \(x^3+y^3\) ,
.\(y^4+y^4\),\(y^5+y^5\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(x^2+y^2=\left(x+y\right)^2-2xy=a^2-2b\)
\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=a^3-3ab\)
\(x^4+y^4=\left(x^2+y^2\right)^2-2x^2y^2=\left(a^2-2b\right)^2-2b^2\)
\(=a^4-4a^2b+4b^2-2b^2=a^4-4a^2b+2b^2\)
\(x^5+y^5=\left(x+y\right)^5-\left(5x^4y+10x^3y^2+10x^2y^3+5xy^4\right)\)
\(=\left(x+y\right)^5-5xy\left(x^3+y^3\right)-10x^2y^2\left(x+y\right)\)
\(=a^5-5\left(a^3-3ab\right)b-10ab^2\)
\(=a^5-5a^3b+15ab^2-10ab^2\)
\(=a^5-5a^3b+5ab^2\)
\(x^2+y^2=\left(x+y\right)^2-2xy=a^2-2b\)
\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=a^3-3ab\)
\(x^4+y^4=\left(x^2+y^2\right)^2-2x^2y^2=\left[\left(x+y\right)^2-2xy\right]^2-2x^2y^2=\left(a^2-2b\right)^2-2b^2\)
\(=a^2-4a^2b+2b^2\)
\(x^5+y^5=\left(x^2+y^2\right)\left(x^3+y^3\right)-x^2y^2\left(x+y\right)=\left(a^2-2b\right)\left(a^3-3ab\right)-ab^2\)
Gọi x,y là nghiệm của phương trình:
\(\left\{{}\begin{matrix}S=x+y=3\\P=x.y=2\end{matrix}\right.\Rightarrow a^2-S.a+P=0\)
\(\Leftrightarrow a^2-3a+2=0\Leftrightarrow\left[{}\begin{matrix}a_1=x=2\\a_2=y=1\end{matrix}\right.\)
a)\(x^2+y^2=1^2+2^2=5\)
b)\(x^3+y^3=1^3+2^3=9\)
c)\(x^4+y^4=1^4+2^4=17\)
d)\(x^5+y^5=1^5+2^5=33\)
e)\(x^6+y^6=1^6+2^6=65\)
Bài 1:
a, \(x^2\) +2\(x\) = 0
\(x.\left(x+2\right)\) = 0
\(\left[{}\begin{matrix}x=0\\x+2=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
\(x\) \(\in\) {-2; 0}
b, (-2.\(x\)).(-4\(x\)) + 28 = 100
8\(x^2\) + 28 = 100
8\(x^2\) = 100 - 28
8\(x^2\) = 72
\(x^2\) = 72 : 8
\(x^2\) = 9
\(x^2\) = 32
|\(x\)| = 3
\(\left[{}\begin{matrix}x=-3\\x=3\end{matrix}\right.\)
Vậy \(\in\) {-3; 3}
c, 5.\(x\) (-\(x^2\)) + 1 = 6
- 5.\(x^3\) + 1 = 6
5\(x^3\) = 1 - 6
5\(x^3\) = - 5
\(x^3\) = -1
\(x\) = - 1
CÓ: \(x^2+y^2=\left(x+y\right)^2-2xy=3^2-2.2=5\)
CÓ: \(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=3\left(5-2\right)=3.3=9\)
CÓ: \(x^4+y^4=\left(x^2+y^2\right)^2-2x^2y^2=5^2-2.2^2=25-8=17\)
CÓ: \(x^5+y^5=\left(x^4+y^4\right)\left(x+y\right)-x^4y-xy^4=3.17-xy\left(x^3+y^3\right)\)
\(=51-2.9=51-18=33\)
CÓ: \(x^6+y^6=\left(x+y\right)\left(x^5+y^5\right)-xy^5-x^5y\)
\(=3.33-xy\left(x^4+y^4\right)=3.33-2.17\)
\(=99-34=65\)
\(x^2+y^2=\left(x+y\right)^2-2xy=3^2-2.2=9-4=5\)
\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=3^3-3.2.3=27-18=9\)
\(x^4+y^4=\left(x+y\right)^4-4xy\left(x^2+y^2\right)-3xy.2xy\)
\(=3^4-4.2.5-3.2.2.2=81-40-24=17\)
\(\left(x+1\right)\left(y-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\y-2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\y=2\end{cases}}}\)
Vậy .........
\(\left(x-5\right)\left(y-7\right)=1\)
\(\Rightarrow\left(x-5\right);\left(y-7\right)\inƯ\left(1\right)=\left\{-1;1\right\}\)
Xét các trường hợp
Vậy \(\orbr{\begin{cases}\left(x;y\right)=\left(6;8\right)\\\left(x;y\right)=\left(4;6\right)\end{cases}}\)
\(B=x^3-y^3+\left(x-y\right)^2\)
\(=\left(x-y\right)^3+3xy\left(x-y\right)+\left(x-y\right)^2\)
\(=4^3+3\cdot5\cdot4+4^2\)
\(=64+16+60\)
=140
\(B=x^3-y^3+\left(x-y\right)^2=\left(x-y\right)\left(x^2+xy+y^2\right)+\left(x-y\right)^2=\left(x-y\right)\left(x^2+xy+y^2+x-y\right)=\left(x-y\right)\left[\left(x-y\right)^2+\left(x-y\right)+3xy\right]=4\left(4^2+4+3.5\right)=140\)
t không biết làm
có ai biết làm vào giúp đi
Ý 1 :
Ta có : \(\left(x+y\right)^3=x^3+3x^2y+3xy^2+y^3\)
\(\Rightarrow x^3+y^3=\left(x+y\right)^3-3x^2y-3xy^2\)
\(\Rightarrow x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)\)
\(\Rightarrow x^3+y^3=1^3-3\cdot5\cdot1=-14\)
Các ý kia tương tự