cho x+y=1,x.y=5 tinh\(x^2+y^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a, \(x^2\) +2\(x\) = 0
\(x.\left(x+2\right)\) = 0
\(\left[{}\begin{matrix}x=0\\x+2=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
\(x\) \(\in\) {-2; 0}
b, (-2.\(x\)).(-4\(x\)) + 28 = 100
8\(x^2\) + 28 = 100
8\(x^2\) = 100 - 28
8\(x^2\) = 72
\(x^2\) = 72 : 8
\(x^2\) = 9
\(x^2\) = 32
|\(x\)| = 3
\(\left[{}\begin{matrix}x=-3\\x=3\end{matrix}\right.\)
Vậy \(\in\) {-3; 3}
c, 5.\(x\) (-\(x^2\)) + 1 = 6
- 5.\(x^3\) + 1 = 6
5\(x^3\) = 1 - 6
5\(x^3\) = - 5
\(x^3\) = -1
\(x\) = - 1
\(\text{a) Ta có:}xy=1\Rightarrow\hept{\begin{cases}2xy=2\\-2xy=-2\end{cases}}\)
\(\text{Ta lại có: }x^2+y^2=2\Rightarrow\hept{\begin{cases}x^2+y^2+2xy=2+2=4\\x^2+y^2-2xy=2-2=0\end{cases}\Rightarrow\hept{\begin{cases}\left(x+y\right)^2=4\\\left(x-y\right)^2=0\end{cases}\Rightarrow}\hept{\begin{cases}x+y=\pm2\\x-y=0\end{cases}}}\)
\(\text{b) Ta có: }x+y=5\)
\(\Rightarrow\left(x+y\right)^2=25\)
\(\Rightarrow x^2+2xy+y^2=25\)
\(\Rightarrow x^2+4+y^2=25\)
\(\Rightarrow x^2+y^2=21\)
\(\text{b) Ta có: }x^2+y^2=21\)
\(\Rightarrow x^2-2xy+y^2=21-2xy\)
\(\Rightarrow\left(x-y\right)^2=21-4\)
\(\Rightarrow\left(x-y\right)^2=17\)
\(\Rightarrow x-y=\pm\sqrt{17}\)
phương trình nghiệm nguyên kiểu này liệt kê ước rồi kẻ bảng ra nhé
a: \(\left(x,y\right)\in\left\{\left(-9;1\right);\left(-1;9\right);\left(-3;3\right)\right\}\)
b: \(\left(x,y\right)\in\left\{\left(1;7\right);\left(-7;-1\right)\right\}\)
c: \(\left(x,y\right)\in\left\{\left(11;-1\right);\left(-11;1\right)\right\}\)
a: \(\left(x,y\right)\in\left\{\left(-9;1\right);\left(-1;9\right);\left(-3;3\right)\right\}\)
b: \(\left(x,y\right)\in\left\{\left(1;7\right);\left(-7;-1\right)\right\}\)
c: \(\left(x,y\right)\in\left\{\left(11;-1\right);\left(-1;11\right)\right\}\)
\(x+y=1\)
\(\Rightarrow\left(x+y\right)^2=1\)
\(x^2+2xy+y^2=1\)
\(\Rightarrow x^2+y^2+10=1\)
\(x^2+y^2=-9\)( vô lý)
Vậy không tìm được giá trị của \(x^2+y^2\)tại \(x+y=1;xy=5\)
Ta có : \(\left(x+y\right)^2=x^2+2xy+y^2\)
\(\Rightarrow\left(x+y\right)^2-2xy=x^2+y^2\)
Thay x+y = 1 và xy = 5 vào biểu thức ta có :
\(x^2+y^2=1^2-2\cdot5=1-10=-9\)
Đề sai