TÌM X BIẾT:
(2x-3)^4-(2x-3)^2=0
AI BIẾT VÀ TRẢ LỜI ĐÚNG THÌ MÌNH XIN CẢM ƠN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
-A= x^2-2xy+4y^2-2x-10y+8
-A= ( x^2+y^2+1-2xy-2x+2y) +(3y^2-12y+7)
-A=(x-y-1)^2+ 3(y^2-4y+7/4)=(x-y-1)^2+3(y-2)^2-27/4>=-... nen A<= 27/4
(ko biết có đúng hay ko)
-A= x^2-2xy+4y^2-2x-10y+8
-A= ( x^2+y^2+1-2xy-2x+2y) +(3y^2-12y+7)
-A=(x-y-1)^2+ 3(y^2-4y+7/4)=(x-y-1)^2+3(y-2)^2-27/4>=-... nen A<= 27/4
a) ( 2x +3 ) . ( y-1 )= 1. -6 = 2. -3 = 3. -2 = 6 . -1
Ta có bảng như sau :
2x + 3 | 1 | 2 | 3 | 6 | ||
x | 2 | loại | 0 | loại | ||
y-1 | 6 | 3 | 2 | 1 | ||
y | 7 | 4 | 3 | 2 |
(=) có 2 cặp xy thỏa mãn :xy ( 2 ; 7 ) và xy ( 0 ; 3 )
=> \(x^4+x^4-\left(x^5+x^2\right)-2x=1\)
=> \(x^5-x^5-x^2-2x=1\)
=> \(0-x.\left(x+2\right)=1\)
=> \(x.\left(x+2\right)=-1\)
Ta có bảng:
\(x\) | \(1\) | \(-1\) |
\(x+2\) | \(-1\) | \(1\) |
=>
\(x\) | \(1\) | \(-1\) |
\(x\) | \(-3\) | \(-1\) |
Vậy x = 1;-1;-3
\(x^4+3x^3-x^2-x^3-3x^2+x-x^2-3x+1.\)
\(\left(x^4-x^3-x^2\right)+3\left(x^3-x^2-x\right)-\left(x^2-x-1\right)=0\)
\(x^2\left(x^2-x-1\right)+3x\left(x^2-x-1\right)-\left(x^2-x-1\right)=0\)
\(\left(x^2-x-1\right)\left(x^2+3x-1\right)=0\)
đến đây dùng denta
\(x^2-x-1=0\Leftrightarrow\Delta=b^2-4ac=1+4=5>0\)
vậy pt có 2 nghiệm phân biệt
\(x_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{1+\sqrt{5}}{2}\) " 1)
\(x_2=\frac{1-\sqrt{5}}{2}\) (2)
\(x^2+3x-1=0\)
áp dụng denta ta có \(\Delta=b^2-4ac=9+4=13>0\)
vậy pt có 2 nghiệm phân biệt
\(x_3=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-3+\sqrt{13}}{2}\) (3)
\(x_4=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-3-\sqrt{13}}{2}\) (4)
gom hết lại rồi kl nghiệm của pt là ....................
\(A\left(x\right)=2x^2+2x+3\)
3) \(A\left(x\right)=3\)
khi đó: \(2x^2+2x+3=3\)
<=> \(x^2+x=0\)
<=> \(x\left(x+1\right)=0\)
<=> \(x=0\)
hoặc \(x=-1\)
A(x) = 3x2 + x3 + 5x4 - x2 - x3 - 5x4 + 2x + 3
= 2x2 + 2x + 3
A(x) + B(x) = 2x - 7
<=> ( 2x2 + 2x + 3 ) + B(x) = 2x - 7
B(x) = 2x - 7 - ( 2x2 + 2x + 3 )
= 2x - 7 - 2x2 - 2x - 3
= -2x2 - 10
A(x) = 3 <=> 2x2 + 2x + 3 = 3
<=> x( 2x + 2 ) = 0
<=> x = 0 hoặc 2x + 2 = 0
<=> x = 0 hoặc x = -1
\(\dfrac{-2}{3}\left(x-\dfrac{1}{4}\right)=\dfrac{1}{3}\left(2x-1\right)\)
\(\Leftrightarrow\dfrac{-2}{3}x+\dfrac{1}{6}=\dfrac{2}{3}x-\dfrac{1}{3}\)
\(\Leftrightarrow\dfrac{-2}{3}x-\dfrac{2}{3}x=\dfrac{-1}{3}-\dfrac{1}{6}\)
\(\Leftrightarrow\dfrac{-4}{3}x=\dfrac{-1}{2}\)
\(\Leftrightarrow x=\dfrac{3}{8}\)
Vậy \(x=\dfrac{3}{8}\)
Bài 1:
Ta có: \(2x+\left|x-3\right|=4\)
\(\Leftrightarrow\left|x-3\right|=4-2x\)
Điều kiện: \(4-2x\ge0\Leftrightarrow2x\le4\Rightarrow x\le2\)
\(PT\Leftrightarrow\orbr{\begin{cases}x-3=4x-2\\x-3=2-4x\end{cases}}\Leftrightarrow\orbr{\begin{cases}3x=-1\\5x=5\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-\frac{1}{3}\left(ktm\right)\\x=1\left(tm\right)\end{cases}}\)
Vậy x = 1
Bài 2:
a) Ta có: \(A=\left|3x+5\right|+4\ge4\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\left|3x+5\right|=0\Rightarrow x=-\frac{5}{3}\)
Vậy Min(A) = 4 khi x = -5/3
b) Ta có: \(B=-\left|2x+1\right|+10\le10\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\left|2x+1\right|=0\Rightarrow x=-\frac{1}{2}\)
Vậy Max(B) = 10 khi x = -1/2
\(\left(2x-3\right)^4-\left(2x-3\right)^2=0\)
\(\Rightarrow\left(2x-3\right)^2\left[\left(2x-3\right)^2-1\right]=0\)
\(\Rightarrow\orbr{\begin{cases}\left(2x-3\right)^2=0\\\left(2x-3\right)^2=1\end{cases}}\)
Từ đó tìm được \(x=\frac{3}{2},x=2,x=1\)
(2x-3)4-(2x-3)2=0
suy ra có 2 TH
TH1 (2x-3)4=0
(2x-3)4=04
2x-3=0
2x=0+3
2x=3
x=3:2
x=1,5
tH 2
(2X-3)2=0
(2X-3)2=02
2X-3=0
2x=0+3
2x=3
x=3:2
x=1.5
vậy x \(\in\){1,5}