124 mũ 4 x 25 mũ 2 x 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) \(4^{x+2}+4^x=68\)
\(\Rightarrow4^x\cdot\left(4^2+1\right)=68\)
\(\Rightarrow4^x\cdot17=68\)
\(\Rightarrow4^x=\dfrac{68}{17}\)
\(\Rightarrow4^x=4\)
\(\Rightarrow4^x=4^1\)
\(\Rightarrow x=1\)
b) \(5\cdot2^{x+4}-3\cdot2^x=308\)
\(\Rightarrow2^x\cdot\left(5\cdot2^4-3\right)=308\)
\(\Rightarrow2^x\cdot\left(5\cdot16-3\right)=308\)
\(\Rightarrow2^x\cdot77=308\)
\(\Rightarrow2^x=\dfrac{308}{77}\)
\(\Rightarrow2^x=4\)
\(\Rightarrow2^x=2^2\)
\(\Rightarrow x=2\)
c) \(4\cdot3^{x+1}+7\cdot3^x=513\)
\(\Rightarrow3^x\cdot\left(4\cdot3+7\right)=513\)
\(\Rightarrow3^x\cdot19=513\)
\(\Rightarrow3^x=\dfrac{513}{19}\)
\(\Rightarrow3^x=27\)
\(\Rightarrow3^x=3^3\)
\(\Rightarrow x=3\)
d) \(5^{x+4}-5^x=3120\)
\(\Rightarrow5^x\cdot\left(5^4-1\right)=3120\)
\(\Rightarrow5^x\cdot\left(625-1\right)=3120\)
\(\Rightarrow5^x\cdot624=3120\)
\(\Rightarrow5^x\cdot\dfrac{3120}{624}\)
\(\Rightarrow5^x=5\)
\(\Rightarrow5^x=5^1\)
\(\Rightarrow x=1\)
f) \(3\cdot4^{2x+1}-16^x=2816\)
\(\Rightarrow3\cdot4^{2x+1}-\left(4^2\right)^x=2816\)
\(\Rightarrow3\cdot4^{2x+1}-4^{2x}=2816\)
\(\Rightarrow4^{2x}\cdot\left(3\cdot4-1\right)=2816\)
\(\Rightarrow4^{2x}\cdot11=2816\)
\(\Rightarrow4^{2x}=\dfrac{2816}{11}\)
\(\Rightarrow4^{2x}=256\)
\(\Rightarrow\left(2^2\right)^{2x}=2^8\)
\(\Rightarrow2^{4x}=2^8\)
\(\Rightarrow4x=8\)
\(\Rightarrow x=2\)
Bài 2:
\(2^x+124=5^y\)
\(\Rightarrow5^y-2^x=124\)
\(\Rightarrow5^y-2^x=125-1\)
\(\Rightarrow\left\{{}\begin{matrix}5^y=125\\2^x=1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}5^y=5^3\\2^x=2^0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}y=3\\x=0\end{matrix}\right.\)
Vậy: ....
b: Ta có: \(2^{x+3}+2^x=144\)
\(\Leftrightarrow2^x\cdot9=144\)
\(\Leftrightarrow2^x=16\)
hay x=4
Bài 2:
a: \(\Leftrightarrow\left(x-5\right)\left(x+5\right)-\left(x+5\right)=0\)
=>(x+5)(x-6)=0
=>x=-5 hoặc x=6
b: \(\Leftrightarrow4x^2-4x+1-4x^2+1=0\)
=>-4x+2=0
hay x=1/2
c: \(\Leftrightarrow\left(x^2+4\right)\left(x^2-1\right)=0\)
=>x=1 hoặc x=-1
a) 4.25-12.5+170:10
=100-60+17
=40+17
=57
b) (7+33:32).4-3
=(7+3).4-3
=10.4-3
=40-3
=37
c) 12:{400:[500-(125+25.7)]}
=12:{400:[500-(125+175)]}
=12:{400:[500-300]}
=12:{400:200}
=12:2
=6
d) 168+{[2.(24+32)-2560]:72}
=168+{[2.(16+9)-1]:49}
=168+{[2.25-1]:49}
=168+{[50-1]:49}
=168+{49:49}
=168+1
=169
a) \(5\left(x+7\right)-10=2^3\cdot5\)
\(\Rightarrow5\left(x+7\right)-10=40\)
\(\Rightarrow5\left(x+7\right)=40+10\)
\(\Rightarrow x+7=\dfrac{50}{5}\)
\(\Rightarrow x+7=10\)
\(\Rightarrow x=10-7\)
\(\Rightarrow x=3\)
b) \(9x-2\cdot3^2=3^4\)
\(\Rightarrow9x-18=81\)
\(\Rightarrow9x=81+18\)
\(\Rightarrow9x=99\)
\(\Rightarrow x=\dfrac{99}{9}\)
\(\Rightarrow x=11\)
c) \(5^{25}\cdot5^{x-1}=5^{25}\)
\(\Rightarrow5^{x-1}=5^{25}:5^{25}\)
\(\Rightarrow5^{x-1}=1\)
\(\Rightarrow5^{x-1}=5^0\)
\(\Rightarrow x-1=0\)
\(\Rightarrow x=1\)
a)\(4^{10}\).\(2^{30}\)
b)\(9^{25}\).\(27^4\)
c)\(25^{50}\).\(125^5\)
d)\(64^3\).\(4^8\).\(16^4\)
g)\(5^3\).\(x^3\)hoặc \(\left(5x\right)^3\)
h)\(x\).\(x^2\). ... . \(x^{2006}\)
i)\(x\).\(x^4\).\(x^7\). ... .\(x^{100}\)
k)\(x^2\).\(x^5\).\(x^8\). ... .\(x^{2003}\)
Đó là lời giải hết đó nha bạn. Chúc bạn 1 ngày vui vẻ.
\(\left(9^{30}-27^{19}\right):3^{57}+\left(125^9-25^{12}\right):5^{24}\)
\(=\left(3^{60}-3^{57}\right):3^{57}+\left(5^{27}-5^{24}\right):5^{24}\)
\(=3^{57}\left(3^3-1\right):3^{57}+5^{24}\left(5^3-1\right):5^{24}\)
\(=3^3-1+5^3-1\)
\(=27-1+125-1\)
\(=150\)
2 )
\(x^2-25-\left(x+5\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(x-5\right)-\left(x+5\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(x-5-1\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(x-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+5=0\\x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=6\end{matrix}\right.\)
Vậy ...
b )
\(\left(2x-1\right)^2-\left(4x^2-1\right)=0\)
\(\Leftrightarrow4x^2-4x+1-4x^2+1=0\)
\(\Leftrightarrow2-4x=0\)
\(\Leftrightarrow4x=2\)
\(\Leftrightarrow x=\dfrac{1}{2}\)
Vậy ...
c )
\(x^2\left(x^2+4\right)-x^2-4=0\)
\(\Leftrightarrow x^2\left(x^2+4\right)-\left(4+x^2\right)=0\)
\(\Leftrightarrow\left(x^2-1\right)\left(x^2+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-1=0\\x^2+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x^2=1\\x^2=-4\left(L\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
Vậy ...
Bài 1:
2\(x\) = 4
2\(^x\) = 22
\(x=2\)
Vậy \(x=2\)
Bài 2:
2\(^x\) = 8
2\(^x\) = 23
\(x=3\)
Vậy \(x=3\)
\(124^4.25^2.5=124^4.5^5\)