Tìm n thuộc N, biết :
a, 2n + 7 chia hết cho n + 2
b, 3n + 10 choia hết cho n-3
Mình cần ngay bây giờ , các bạn giúp mình nha !!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)n+2={1;2;4;8;16}
n={-1;0;2;6;14}
b)(n-4)chia hết cho(n-1)
(n-1-3) chia hết cho(n-1)
Vì (n-1)chia hết cho (n-1) suy ra -3 chia hết cho (n-1)
Vậy n-1 thuộc Ư(-3)={1;3;-1;-3}
suy ra n={1;4;0;-2}
c) 2n+8 thuộc B(n+1)
suy ra n+1 chia het cho 2n+8
suy ra 2n+2 chia het cho 2n+8
suy ra (2n+8)-6 chia het cho2n+8
Vi 2n+8 chia het cho 2n+8 nen -6 chia het cho 2n+8
suy ra 2n+8 thuộc {1;2;3;6;-1;-2;-3;-6}
mà 2n+8 là số nguyên chẵn( chẵn + chẵn = chẵn)
suy ra 2n+8 thuộc{2;6;-2;-6}
suy ra 2n thuộc{-6;-2;-10;-14}
suy ra n thuộc {-3;-1;-5;-7}
d) 3n-1 chia het cho n-2
suy ra [(3n-6)+5chia hết cho n-2
Vì 3n-6 chia hết cho n-2 suy ra 5 chia hết cho n-2
suy ra n-2 thuộc{1;5;-1;-5}
suy ra n thuộc{3;7;1;-3}
e)3n+2 chia hết cho 2n+1
suy ra [(6n+3)+1] chia hết cho 2n+1
Vì 6n+3 chia hết cho 2n+1 nên 1 chia hết cho 2n+1
suy ra 2n+1 thuộc{1;-1}
suy ra 2n thuộc {0;-2}
suy ra n thuộc {0;-1}
\(x+7⋮x+2\)
\(\Rightarrow x+2+5⋮x-2\)
mà \(x+2⋮x+2\)
\(\Rightarrow5⋮x+2\Rightarrow x+2\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
x + 2 = 1 => x = -1
.... tương tự
\(3-2n⋮n+1\)
\(\Leftrightarrow-2n+3⋮n+1\)
\(\Leftrightarrow-2\left(n+1\right)+5⋮n+1\)
\(\Leftrightarrow5⋮n+1\)
\(\Leftrightarrow n+1\inƯ\left(5\right)\)
\(\RightarrowƯ\left(5\right)\in\left\{\pm1;\pm5\right\}\)
Ta có bảng sau:
n+1 | -1 | 1 | -5 | 5 |
n | -2 | 0 | -6 | 4 |
KL | tm | tm | tm | tm |
a) \(-7n+3⋮n-1\)
\(\Rightarrow\left(-7n+3\right).1-\left(-7\right).\left(n-1\right)⋮n-1\)
\(\Rightarrow-7n+3+7n-7⋮n-1\)
\(\Rightarrow-4⋮n-1\)
\(\Rightarrow n-1\in\left\{-1;1;-2;2;-4;4\right\}\)
\(\Rightarrow n\in\left\{0;2;-1;3;-3;5\right\}\)
b) \(4n+5⋮4-n\)
\(\Rightarrow\left(4n+5\right).1-\left(-4\right)\left(4-n\right)⋮4-n\)
\(\Rightarrow4n+5-4n+16⋮4-n\)
\(\Rightarrow21⋮4-n\)
\(\Rightarrow4-n\in\left\{-1;1;-3;3;-7;7;-21;21\right\}\)
\(\Rightarrow n\in\left\{5;3;7;1;11;-3;25;-17\right\}\)
c) \(3n+4⋮2n+1\)
\(\Rightarrow\left(3n+4\right).2-3.\left(2n+1\right)⋮2n+1\)
\(\Rightarrow6n+8-6n-3+1⋮2n+1\)
\(\Rightarrow5⋮2n+1\)
\(\Rightarrow2n+1\in\left\{-1;1;-5;5\right\}\)
\(\Rightarrow n\in\left\{-1;0;-3;2\right\}\)
d) \(4n+7⋮3n+1\)
\(\Rightarrow\left(4n+7\right).3-4.\left(3n+1\right)⋮3n+1\)
\(\Rightarrow12n+21-12n-4⋮3n+1\)
\(\Rightarrow17⋮3n+1\)
\(\Rightarrow n\in\left\{-\dfrac{2}{3};0;-6;\dfrac{16}{3}\right\}\Rightarrow n\in\left\{0;-6\right\}\left(n\in Z\right)\)
\(\Rightarrow3n+1\in\left\{-1;1;-17;17\right\}\)
a) Ta có: -7n + 3 chia hết cho n - 1
=> (-7n + 3) % (n - 1) = 0
=> -7n + 3 = k(n - 1), với k là một số nguyên
=> -7n + 3 = kn - k => (k - 7)n = k - 3
=> n = (k - 3)/(k - 7),
với k - 7 khác 0 Vậy n thuộc Z khi và chỉ khi k - 7 khác 0.
b) Ta có: 4n + 5 chia hết cho 4 - n
=> (4n + 5) % (4 - n) = 0
=> 4n + 5 = k(4 - n), với k là một số nguyên
=> 4n + 5 = 4k - kn
=> (4 + k)n = 4k - 5
=> n = (4k - 5)/(4 + k), với 4 + k khác 0
Vậy n thuộc Z khi và chỉ khi 4 + k khác 0.
c) Ta có: 3n + 4 chia hết cho 2n + 1
=> (3n + 4) % (2n + 1) = 0
=> 3n + 4 = k(2n + 1), với k là một số nguyên
=> 3n + 4 = 2kn + k
=> (2k - 3)n = k - 4
=> n = (k - 4)/(2k - 3), với 2k - 3 khác 0
Vậy n thuộc Z khi và chỉ khi 2k - 3 khác 0.
d) Ta có: 4n + 7 chia hết cho 3n + 1
=> (4n + 7) % (3n + 1) = 0
=> 4n + 7 = k(3n + 1), với k là một số nguyên
=> 4n + 7 = 3kn + k
=> (3k - 4)n = k - 7 => n = (k - 7)/(3k - 4), với 3k - 4 khác 0
Vậy n thuộc Z khi và chỉ khi 3k - 4 khác 0.
a/ \(\frac{n+2}{n-1}=\frac{n-1+3}{n-1}=1+\frac{3}{n-1}\)
Để n + 2 chia hết cho n - 1 thì 3 phải chia hết cho n - 1 hay n -1 phải là ước của 3
=> n - 1 = {-3; -1; 1; 3} => n = {-2; 0; 2; 4}
b/ \(\frac{2n+7}{n+1}=\frac{2n+2+5}{n+1}=\frac{2\left(n+1\right)+5}{n+1}=2+\frac{5}{n+1}\)
Để 2n + 7 chia hết cho n + 1 thì 5 phải chia hết cho n +1 hay n +1 phải là ước của 5
=> n + 1 = {-5; -1; 1; 5} => n = {-6; -2; 0; 4}
Các câu còn lại làm tương tự
dieu kien : x khac 0
vi x+5 chia het cho 2x+1
Nen 2(x+5) chia het cho 2x+1
=> 2x+10 chia het cho 2x+1
Ma 2x+1 chia het cho 2x+1
=> 2x+10-2x+1 chia het cho 2x+1
=>9 chia het cho 2x+1
=> 2x+1 thuoc U(9)
=>2x+1 thuoc {1,3,9}
=>2x thuoc {0,2,8}
=>x thuoc {0,1,4}
Ket hop voi dieu kien thi
x thuoc {1,4}
Ta có : \(4n+5⋮5\)
\(\Leftrightarrow4n⋮5\)
\(\Leftrightarrow n⋮5\)
\(\Rightarrow n\inℕ\left(ĐK:n\in B_{\left(5\right)}\right)\)
\(b,3n+4⋮n-1\)
Ta có : \(\frac{3n+4}{n-1}=\frac{3n-3+7}{n-1}=\frac{3(n-1)+7}{n-1}=3+\frac{7}{n-1}\)
Do đó : \(7⋮n-1\)=> \(n-1\inƯ(7)\)
=> \(n-1\in\left\{1;7\right\}\)
=> \(n\in\left\{2;8\right\}\)
c) n2 + 1 chia hết cho n - 1 (n thuộc N, n khác 1)
\(\Rightarrow\frac{n^2+1}{n-1}\in N\Rightarrow\frac{n^2+1}{n-1}=\frac{n^2+n-n-1+2}{n-1}=\frac{n\left(n+1\right)-\left(n+1\right)+2}{n-1}=\frac{\left(n-1\right)\left(n+1\right)+2}{n-1}=n+1+\frac{2}{n-1}\in N\)
Mà \(n+1\in N\)\(\Rightarrow\frac{2}{n-1}\in N\Rightarrow\)2 chia hết cho n - 1
Từ đây bạn tự làm tiếp nha........
a) ta có: 2n + 7 chia hết cho n + 2
2n + 4 + 3 chia hết cho n + 2
2.(n+2) + 3 chia hết cho n+2
mà 2.(n+2) chia hết cho n + 2
=> 3 chia hết cho n + 2
...
bn tự làm tiếp nha
b) ta có: 3n + 10 chia hết cho n - 3
3n -9 + 19 chia hết chi n - 3
3.(n-3)+19 chia hết cho n - 3
=>...