Cho hình bình hành ABCD gọi M là điểm di động trên cạnh CD và N là điểm di động trên cạnh BC sao cho BM = DN 2 đường thẳng BM và DN cắt nhau tại P . Cm PA là tia phân giác của góc BPD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi khoảng cách từ A đến BM,ND lần lượt là h và k. Kẻ MH vuông góc AB
Ta có : \(S_{AMB}=\frac{MH.AB}{2}=\frac{S_{ABCD}}{2}\)
Tương tự \(S_{AND}=\frac{S_{ABCD}}{2}\)
Do đó : \(2S_{AMB}=2S_{AND}\) hay \(h.BM=k.DN\)
Mà BM=DN nên h=k
Suy ra khoảng cách từ A đến hai đường thẳng BM,DN là bằng nhau; BM cắt DN tại I
Vậy thì A nằm trên phân giác của \(\widehat{DIB}\) hay IA là phân giác của góc DIB ( đpcm )
Gọi khoảng cách từ A đến BM,DN lần lượt là h và k. Kẻ MH vuông góc AB.
Ta có \(S_{AMB}=\frac{MH.AB}{2}=\frac{S_{ABCD}}{2}\). Tương tự \(S_{AND}=\frac{S_{ABCD}}{2}\)
Do đó \(2S_{AMB}=2S_{AND}\) hay \(h.BM=k.DN\). Mà BM = DN nên \(h=k\)
Suy ra khoảng cách từ A đến 2 đường thẳng BM,DN là bằng nhau; BM cắt DN tại I
Vậy thì A nằm trên phân giác của ^DIB hay IA là phân giác góc DIB (đpcm).
.a.
Vì `EF` là đường trung trực MB.
=> `EM=EB`
=> `ΔEMB` cân tại E
=> \(\widehat{EMB}=\widehat{EBM}\)
Chứng minh tương tự được: \(\widehat{FMB}=\widehat{FBM}\)
Vì `AM=DN` mà AM//DN
=> Tứ giác `AMND` là hình bình hành.
b.
Từ câu (a) suy ra:
ME//BF
BE//FM
=> Hình bình hành MEBF có `EF⊥MB`
=> Tứ giác MEBF là hình thoi
https://hoccungvuvi.blogspot.com/2019/07/hinh-hoc-nang-cao-lop-8-danh-cho-hoc.html