K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
19 tháng 8 2021

Chi tiết \(BM=DN=\dfrac{a}{3}\) hoàn toàn không cần thiết

a.

Ta có: \(AC\perp BD\) tại O (2 đường chéo hình vuông) \(\Rightarrow O\) thuộc đường tròn đường kính AB

\(AH\perp BH\) (gt) \(\Rightarrow\) H thuộc đường tròn đường kính AB

\(\Rightarrow\) 4 điểm A,B,O,H cùng thuộc đường tròn đường kính AB hay tứ giác ABHO nội tiếp

Hoàn toàn tương tự, 4 điểm ADKO cùng thuộc đường tròn đường kính AD nên tứ giác ADKO nội tiếp

b.

Trong tam giác vuông ABM vuông tại B với đường cao BH, áp dụng hệ thức lượng:

\(AB^2=AH.AM\)

Tương tự, trong tam giác vuông ADN:

\(AD^2=AK.AN\)

Mà \(AB=AD=a\Rightarrow AH.AM=AK.AN\Rightarrow\dfrac{AH}{AN}=\dfrac{AK}{AM}\) (đpcm)

NV
19 tháng 8 2021

undefined

4 tháng 11 2018

A B C D M N F O E I J x

a) Xét \(\Delta\)ABM và \(\Delta\)ADN có: ^ABM = ^ADN (=900); AB=AD; BM=DN  => \(\Delta\)ABM = \(\Delta\)ADN (c.g.c)

=> AM=AN (2 canh tương ứng);  ^BAM = ^DAN (2 góc tương ứng). Mà ^BAM + ^DAM = 900

=> ^DAN + ^DAM = ^MAN = 900 => AM vuông góc AN

Ta có: MF//AN; NF//AM; AM vuông góc AN nên ^MAN = ^AMF = ^ANF = 900

Do đó: Tứ giác ANFM là hình chữ nhật. Lại có: AM=AN (cmt) => Tứ giác ANFM là hình vuông (đpcm).

b) Gọi I và J lần lượt là hình chiếu của F trên 2 đường thẳng CD và BC

Tứ giác ANFM là hình vuông => FM=FN

Xét tứ giác CNFM có: ^MCN = ^MFN = 900 => ^FNC + ^CMF = 1800 => ^FNC = ^FMJ hay ^FNI = ^FMJ

Xét \(\Delta\)FIN và \(\Delta\)FJM có: ^FIN = ^FJM (=900); FN=FM; ^FNI = ^FMJ

=> \(\Delta\)FIN = \(\Delta\)FJM (Ch.gn) => FI = FJ (2 cạnh tương ứng)

Xét ^MCN: Có FI và FJ là k/c từ điểm F tới 2 cạnh của góc này; FI=FJ

=> F nằm trên đường phân giác của ^MCN (đpcm).

c) Gọi giao điểm của tia AD và CF là E.

CF là phân giác ^MCN => ^FCN = ^MCN/2 = 450 => ^FCN = ^ACD = 450 

=> \(\Delta\)ACE vuông tại C có đường phân giác CD. Mà CD vuông góc AE

=> \(\Delta\)ACE vuông cân tại C = >CD đồng thời là đường trung tuyến => D là trung điểm AE

Suy ra: OD là đường trung bình \(\Delta\)FAE => OD // EF hay OD // CF (1)

Dễ c/m: BD // CF (Do ^DBC + ^BCF = 450 + 1350 = 1800)                  (2)

Từ (1) và (2) => 3 điểm B;D;O thẳng hàng (đpcm).

d) Ta thấy: B;D;O là 3 điểm thẳng hàng; BD cố định nên O luôn thuộc đường thẳng BD cố định khi M di động trên Cx.

4 tháng 11 2018

câu e đâu bạn :v

15 tháng 1 2016

chtt

ai xem qua nhớ tick cho mình thì may mắn cả năm

15 tháng 1 2016

Câu hỏi tương tự ko có ai giải hết

21 tháng 9 2018

Bạn vẽ hình lên đi, rồi mình giải cho

21 tháng 9 2018

Bạn kham khảo bài của bạn vũ tiền châu tại link:

Câu hỏi của Nhóc vậy - Toán lớp 9 - Học toán với OnlineMath

12 tháng 4 2018

Chứng minh được:

C B F ^ + B E M ^   =   M D F ^ + D E C ^ = 90 0

=>  B M D ^ = 90 0  nên M thuộc đường tròn đường kính BD. Mà E Î BC nên quỹ tích của điểm M là là cung B C ⏜  của đường tròn đường kính BD

28 tháng 10 2020

Mn giải giúp e vs ((

1. Cho (O,R) dây AB cố định. Từ C di động trên (O) dựng hình bình hành CABD. CMR  giao điểm hai đường chéo nằm trên 1 đường trong cố định2. Cho BC cố định, I là trung điểm BC, A di động trên mặt phẳng sao cho BA=BC, H là trung điểm của AC, AI cắt BH tại M. Hỏi M di động trên di động trên đường nào thì A di động3. Cho (O,R) BC là dây cố định. A là  1 điểm di động trên (O,R). Lấy M đối xứng...
Đọc tiếp

1. Cho (O,R) dây AB cố định. Từ C di động trên (O) dựng hình bình hành CABD. CMR  giao điểm hai đường chéo nằm trên 1 đường trong cố định

2. Cho BC cố định, I là trung điểm BC, A di động trên mặt phẳng sao cho BA=BC, H là trung điểm của AC, AI cắt BH tại M. Hỏi M di động trên di động trên đường nào thì A di động

3. Cho (O,R) BC là dây cố định. A là  1 điểm di động trên (O,R). Lấy M đối xứng với C qua trung điểm I của AB. Hỏi M di động trên đường nào khi A di động

4.  Cho A di chuyển trên (O,R) đường kính BC gọi M đối xứng với A qua B, H là hình chiếu của A trên BC, I là trung điểm HC

a. CMR M chuyển động trên (O,R) 1 đường thẳng tròn cố định 

b. CMR tam giác AHM  đồng dạng tam giác CIA

c. CMR MH vuông góc AI

d MH cắt (O) tại E và F đường thẳng AI cắt (O) tại G. CMR Tổng bình phương các cạnh  của tứ giác AEGF ko đổi

0