K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(4\frac{1}{3}\div\frac{x}{4}=\frac{603}{100}\)

\(4\frac{1}{3}\div\frac{x}{4}=6\frac{3}{100}\)

\(4\frac{1}{3}\div\frac{x}{4}=6\left(\frac{3}{100}\right)\)

\(4\frac{1}{3}\div\frac{x}{4}=\frac{9}{50}\)

   \(\frac{4}{3}\div\frac{x}{4}=\frac{9}{50}\)

               \(\frac{x}{4}=\frac{4}{3}\div\frac{9}{50}\)

               \(\frac{x}{4}=\frac{200}{27}\)

đáp án và lời giải trên nếu không đúng thì mong các bạn giúp đỡ.

Học tốt!!!

9 tháng 4 2019

\(a,\frac{x+1}{65}+\frac{x+2}{64}=\frac{x+3}{63}+\frac{x+4}{62}\)

\(\Rightarrow\left[\frac{x+1}{65}+1\right]+\left[\frac{x+2}{64}+1\right]=\left[\frac{x+3}{63}+1\right]+\left[\frac{x+4}{62}+1\right]\)

\(\Rightarrow\frac{x+1+65}{65}+\frac{x+2+64}{64}=\frac{x+3+63}{63}+\frac{x+4+62}{62}\)

\(\Rightarrow\frac{x+66}{65}+\frac{x+66}{64}=\frac{x+66}{63}+\frac{x+66}{62}\)

\(\Rightarrow\frac{x+66}{65}+\frac{x+66}{64}=\frac{x+66}{63}+\frac{x+66}{62}=0\)

\(\Rightarrow\left[x+66\right]\left[\frac{1}{65}+\frac{1}{64}-\frac{1}{63}+\frac{1}{62}\right]=0\)

Mà \(\frac{1}{65}+\frac{1}{64}-\frac{1}{63}+\frac{1}{62}\ne0\)

\(\Rightarrow x+66=0\)

\(\Rightarrow x=0-66=-66\)

Auto làm nốt câu b

9 tháng 4 2019

a,  Cộng cả 2 vế với 2 

Ta có \(\frac{x+1}{64}+\frac{x+2}{63}+2=\frac{x+3}{62}+\frac{x+4}{61}+2\)

\(\left(\frac{x+1}{64}+\frac{64}{64}\right)+\left(\frac{x+2}{63}+\frac{63}{63}\right)=\left(\frac{x+3}{62}+\frac{62}{62}\right)+\left(\frac{x+4}{61}+\frac{61}{61}\right)\)

=>  \(\frac{x+65}{64}+\frac{x+65}{63}=\frac{x+65}{62}+\frac{x+65}{61}\)\(\)

=> \(\frac{x+65}{64}+\frac{x+65}{63}-\frac{x+65}{62}-\frac{x+65}{61}=0\)

=> \(\left(x+65\right)\left(\frac{1}{64}+\frac{1}{63}-\frac{1}{62}-\frac{1}{61}\right)=0\)

Do \(\frac{1}{64}+\frac{1}{63}-\frac{1}{62}-\frac{1}{61}\ne0\)=> \(x+65=0\)

=> \(x=-65\)

b ,  Lm tương tự như Câu a

Chúc bn hok tốt

18 tháng 5 2017

Bài 3:

a,Đặt A = \(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}\)

A = \(\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-\frac{1}{2^4}+\frac{1}{2^5}-\frac{1}{2^6}\)

2A = \(1-\frac{1}{2}+\frac{1}{2^2}-\frac{1}{2^3}+\frac{1}{2^4}-\frac{1}{2^5}\)

2A + A = \(\left(1-\frac{1}{2}+\frac{1}{2^2}-\frac{1}{2^3}+\frac{1}{2^4}-\frac{1}{2^5}\right)+\left(\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-\frac{1}{2^4}+\frac{1}{2^5}-\frac{1}{2^6}\right)\)

3A = \(1-\frac{1}{2^6}\)

=> 3A < 1 

=> A < \(\frac{1}{3}\)(đpcm)

b, Đặt A = \(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\)

3A = \(1-\frac{2}{3}+\frac{3}{3^2}-\frac{4}{4^3}+...+\frac{99}{3^{98}}-\frac{100}{3^{99}}\)

3A + A = \(\left(1-\frac{2}{3}+\frac{3}{3^2}-\frac{4}{4^3}+...+\frac{99}{3^{98}}-\frac{100}{3^{99}}\right)-\left(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\right)\)

4A = \(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}-\frac{100}{3^{100}}\)

=> 4A < \(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\)       (1)

Đặt B = \(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\)

3B = \(3-1+\frac{1}{3}-\frac{1}{3^2}+...+\frac{1}{3^{97}}-\frac{1}{3^{98}}\)

3B + B = \(\left(3-1+\frac{1}{3}-\frac{1}{3^2}+...+\frac{1}{3^{97}}-\frac{1}{3^{98}}\right)+\left(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\right)\)

4B = \(3-\frac{1}{3^{99}}\)

=> 4B < 3

=> B < \(\frac{3}{4}\)   (2)

Từ (1) và (2) suy ra 4A < B < \(\frac{3}{4}\)=> A < \(\frac{3}{16}\)(đpcm)

18 tháng 5 2017

bài 1:

5n+7 chia hết cho 3n+2

=> [3(5n+7) - 5(3n + 2)] chia hết cho 3n+2

=> (15n + 21 - 15n - 10) chia hết cho 3n+2

=> 11 chia hết cho 3n + 2

=> 3n + 2 thuộc Ư(11) = {1;-1;11;-11}

Ta có bảng:

3n + 21-111-11
n-1/3 (loại)-1 (chọn)3 (chọn)-13/3 (loại)

Vậy n = {-1;3}

19 tháng 2 2018

      \(\frac{x+2}{327}+\frac{x+3}{326}+\frac{x+4}{325}+\frac{x+5}{324}+\frac{x+349}{5}=0\)

\(\Leftrightarrow\)\(\frac{x+2}{327}+1+\frac{x+3}{326}+1+\frac{x+4}{325}+1+\frac{x+5}{324}+1 +\frac{x+349}{5}-4=0\)

\(\Leftrightarrow\)\(\frac{x+329}{327}+\frac{x+329}{326}+\frac{x+329}{325}+\frac{x+329}{324}+\frac{x+329}{5}=0\)

\(\Leftrightarrow\)\(\left(x+329\right)\left(\frac{1}{327}+\frac{1}{326}+\frac{1}{325}+\frac{1}{324}+\frac{1}{5}\right)=0\)

\(\Leftrightarrow\)\(x+329=0\)   (vì  1/327 + 1/326 + 1/325 + 1/324 + 1/5  khác  0  )

\(\Leftrightarrow\)\(x=-329\)

19 tháng 2 2018

Bài 1 : 

\(\frac{x+2}{327}+\frac{x+3}{326}+\frac{x+4}{325}+\frac{x+5}{324}+\frac{x+349}{5}=0\)

\(\Leftrightarrow\)\(\left(\frac{x+2}{327}+1\right)+\left(\frac{x+3}{326}+1\right)+\left(\frac{x+4}{325}+1\right)+\left(\frac{x+5}{324}+1\right)+\left(\frac{x+349}{5}-4\right)=0\)

\(\Leftrightarrow\)\(\frac{x+329}{327}+\frac{x+329}{326}+\frac{x+329}{325}+\frac{x+329}{324}+\frac{x+329}{5}=0\)

\(\Leftrightarrow\)\(\left(x+329\right)\left(\frac{1}{327}+\frac{1}{326}+\frac{1}{325}+\frac{1}{324}+\frac{1}{5}\right)=0\)

Vì \(\left(\frac{1}{327}+\frac{1}{326}+\frac{1}{325}+\frac{1}{324}+\frac{1}{5}\right)\ne0\)

\(\Rightarrow\)\(x+329=0\)

\(\Rightarrow\)\(x=-329\)

Vậy \(x=-329\)

5 tháng 4 2017

ta gọi \(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{90}\)là A

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)

\(\Leftrightarrow1.\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{9}-\frac{1}{10}\right)\)

\(\Rightarrow A=1-\frac{1}{10}=\frac{9}{10}\)

ta gọi B là biểu thức thứ2

\(B=\frac{2.2}{3}\times\frac{3.3}{2.4}\times\frac{4.4}{3.5}\times...\times\frac{10.10}{9.11}\)

\(\Rightarrow\)2 x \(\frac{10}{11}\)\(=\frac{20}{11}\)

\(\Rightarrow\)\(x+\frac{9}{10}=\frac{20}{11}+\frac{9}{110}\)

\(\Rightarrow x=1\)

mk nghĩ vậy bạn ạ, mk mong nó đúng

2 tháng 3 2020

\(M=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)

\(=\left(x-1\right)\left(x+6\right)\left(x+2\right)\left(x+3\right)\)

\(=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)

\(=\left(x^2+5x\right)^2-36\ge-36\)

Dấu "=" xảy ra khi \(x\in\left\{0;-5\right\}\)

2 tháng 3 2020

Giải PT \(\frac{x-6}{2010}+\frac{x-603}{471}+\frac{x-1}{403}=9\)

\(\Leftrightarrow\frac{x-6}{2010}+\frac{x-603}{471}+\frac{x-1}{403}-9=0\)

\(\Leftrightarrow\left(\frac{x-6}{2010}-1\right)+\left(\frac{x-603}{471}-3\right)+\left(\frac{x-1}{403}-5\right)=0\)

\(\Leftrightarrow\frac{x-2016}{2010}+\frac{x-2016}{471}+\frac{x-2016}{403}=0\)

\(\Leftrightarrow\left(x-2016\right)\left(\frac{1}{2010}+\frac{1}{471}+\frac{1}{403}\right)=0\)

Mà \(\left(\frac{1}{2010}+\frac{1}{471}+\frac{1}{403}\right)\ne0\)

\(\Leftrightarrow x-2016=0\Leftrightarrow x=2016\)

Vậy x=2016

b) \(M=\left(x-1\right)\left(x+2\right).\left(x+3\right)\left(x+6\right)\)

\(M=\left[\left(x-1\right)\left(x+6\right)\right].\left[\left(x+2\right).\left(x+3\right)\right]\)

\(M=\left(x^2+5x-6\right).\left(x^2+5x+6\right)=\left(x^2+5x\right)^2-36\)

Các bạn tự làm tiếp được rồi nhé

15 tháng 1 2016

\(\frac{9}{10}\) tick nha Hatsune Miku

15 tháng 1 2016

9/10

tich nha bạn

27 tháng 3 2020

\(\left|5x-3\right|-3x=12\)

\(\Leftrightarrow\left|5x-3\right|=12+3x\)

\(\Leftrightarrow\hept{\begin{cases}5x-3=12+3x\\-\left(5x-3\right)=12+3x\end{cases}\Rightarrow\hept{\begin{cases}5x-3x=12+3\\-5x+3=12+3x\end{cases}\Rightarrow}\hept{\begin{cases}2x=15\\-5x-3x=12-3\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{15}{2}\\-8x=9\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{15}{2}\\x=\frac{-9}{8}\end{cases}}}\)