phân tích thành nhân tử
a, x2 + ( V5 +1)x + V5
b, 15x^2 - 31x+2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(=x^4-14x^2+40-72=x^4-14x^2-32=\left(x-4\right)\left(x+4\right)\left(x^2+2\right)\)
b) \(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)+1=\left(x^2+5x\right)^2+2\left(x^2+5x\right)+1=\left(x^2+5x+1\right)^2\)
c) \(=x^4+3x^3-3x^2+3x^3+9x^2-9x+x^2+3x-3-5=x^4+6x^3+7x^2-6x-8=\left(x-1\right)\left(x+1\right)\left(x+2\right)\left(x+4\right)\)
a: Ta có: \(\left(x^2-4\right)\left(x^2-10\right)-72\)
\(=x^4-14x^2-32\)
\(=\left(x^2-16\right)\left(x^2+2\right)\)
\(=\left(x-4\right)\left(x+4\right)\left(x^2+2\right)\)
b: Ta có: \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)+1\)
\(=\left(x^2+5x+6\right)\left(x^2+5x+4\right)+1\)
\(=\left(x^2+5x\right)^2+10\left(x^2+5x\right)+24+1\)
\(=\left(x^2+5x+1\right)^2\)
\(a,=\left(x-1\right)^4-2\left(x-1\right)^2+1\\ =\left[\left(x-1\right)^2-1\right]^2\\ =\left(x^2-2x-2\right)^2\\ b,=\left[\left(x+1\right)\left(x+5\right)\right]\left[\left(x+2\right)\left(x+4\right)\right]-4\\ =\left(x^2+6x+5\right)\left(x^2+6x+8\right)-4\\ =\left(x^2+6x\right)^2+13\left(x^2+6x\right)+36\\ =\left(x^2+6x+4\right)\left(x^2+6x+9\right)\\ =\left(x+3\right)^2\left(x^2+6x+4\right)\)
a: \(15x^2-5x^3=5x^2\left(3-x\right)\)
b: \(8x^3-y^3+4x^2y-2xy^2\)
\(=\left(2x-y\right)\left(4x^2+2xy+y^2\right)+2xy\left(2x-y\right)\)
\(=\left(2x-y\right)\left(4x^2+4xy+y^2\right)\)
\(=\left(2x-y\right)\left(2x+y\right)^2\)
c: Ta có: \(x^8+64y^4\)
\(=x^8+16x^4y^2+64y^4-16x^4y^2\)
\(=\left(x^4+8y^2\right)^2-\left(4x^2y\right)^2\)
\(=\left(x^2-4x^2y+8y^2\right)\left(x^2+4x^2y+8y^2\right)\)
a/ \(\left(x+y\right)^2-8\left(x+y\right)+12\)
\(=\left(x+y\right)\left(x+y-8+12\right)\)
\(=\left(x+y\right)\left(x+y+4\right)\)
==========
b/\(\left(x^2+2x\right)^2-2x^2-4x-3\)
\(=\left(x^2+2x\right)^2-\left(2x^2+4x\right)-3\)
\(=\left(x^2+2x\right)^2-2\left(x^2+2x\right)-3\)
\(=\left(x^2+2x\right)\left(x^2+2x-5\right)\)
===========
c/ \(\left(x^2+x\right)^2-2\left(x^2+x\right)-15\)
\(=\left(x^2+x\right)\left(x^2+x-2-15\right)\)
\(=\left(x^2+x\right)\left(x^2+x-17\right)\)
[---]
a: (x^2+x)^2+4x^2+4x-12
=(x^2+x)^2+4(x^2+x)-12
=(x^2+x+6)(x^2+x-2)
=(x^2+x+6)(x+2)(x-1)
b: =(x^2+8x)^2+22(x^2+8x)+105+15
=(x^2+8x)^2+22(x^2+8x)+120
=(x^2+8x+10)(x^2+8x+12)
=(x^2+8x+10)(x+2)(x+6)
c: =8x^2+12x-2x-3
=(2x+3)(4x-1)
a: =(x^2+x)^2+4(x^2+x)-12
=(x^2+x+6)(x^2+x-2)
=(x^2+x+6)(x+2)(x-1)
b: =(x^2+8x)^2+22(x^2+8x)+120
=(x^2+8x+12)(x^2+8x+10)
=(x+2)(x+6)(x^2+8x+10)
c: =8x^2+12x-2x-3
=(2x+3)(4x-1)
a) \(49-x^2-y^2+2xy=49-\left(x^2-2xy+y^2\right)=49-\left(x-y\right)^2=\left(7-x+y\right)\left(7+x-y\right)\)
b) \(\left(x-3\right)+2x\left(3-x\right)^2=\left(x-3\right)+2x\left(x-3\right)^2=\left(x-3\right)\left[1+2x\left(x-3\right)\right]=\left(x-3\right)\left(2x^2-6x+1\right)\)
a) Không hiểu đề bài! Đánh đề bài lại cho rõ hơn đi -_-"
b) \(15x^2-31x+2\)
\(=15x^2-\left(30x+1x\right)+2\)
\(=15x^2-30x-x+2\)
\(=\left(15x^2-30x\right)-\left(x-2\right)\)
\(=15x\left(x-2\right)-1\left(x-2\right)\)
\(=\left(x-2\right)\left(15x-1\right)\)
Easy quá phải không nào?