Cho hình vuông ABCD, M thuộc BC. Trên nửa mặt phẳng bờ BC chứa A vẽ MN vuông góc với MA, MN=MA. Kẻ NH vuông góc với BC.
a) CMR DH vuông góc với MN
b) CN cắt AD tại E, CMR DA=DE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Xét tứ giác ACED có
AD//CE
AD=CE
Do đó: ACED là hình bình hành
Suy ra: AC//ED
hay ED⊥AB
Đáp án:
Giải thích các bước giải:
a) tam giác ADC và tam giác ECD
AD=FC
chung cạnh CD
Góc D=góc C= 90 độ
suy ra tam giác ADC=tam giác ECD(c.g.c)
b) Ta có AD=CE
AD // CF ( cùng vuông góc BC)
suy ra ADEC là hình bình hành
suy ra DE // AC
mà AB vuông góc AC => DE vuông góc AB
c) Ta có ADEC là hình bình hành => góc DEC=góc DAC (1)
Ta có góc DAC+góc BAD= 90 độ
mà góc ABC+ góc BAD= 90 độ
=> góc DAC=ABC (2)
Từ (1) và (2) suy ra góc CED=góc ABC
cho mifh xin tích Ạ
b.
Trên tia đối của MA lấy điểm N sao cho MA=MN.
Kẻ \(DF\perp AM\left(F\in AM\right)\)
Tí nữa tớ hướng dẫn cho
a: Ta có: \(\widehat{DAB}+\widehat{BAC}=\widehat{DAC}=90^0\)
\(\widehat{EAC}+\widehat{BAC}=\widehat{BAE}=90^0\)
Do đó: \(\widehat{DAB}=\widehat{CAE}\)
Xét ΔDAB và ΔCAE có
AD=AC
\(\widehat{DAB}=\widehat{CAE}\)
AB=AE
Do đó: ΔDAB=ΔCAE
=>DB=CE
Bài làm
a) Xét tam giác AMB và tam giác FMC có:
AM = MF
\(\widehat{AMB}=\widehat{FMC}\)( hai góc đối nhau )
BM = MC
=> Tam giác AMB = tam giác FMC ( c.g.c )
=> \(\widehat{BAM}=\widehat{CFM}\)( hai góc t/ứng )
Mà hai góc này so le trong
=> AB // CF
# Học tốt #
câu a
ta xét \(\Delta DPA\) và \(\Delta AHB\) có \(\widehat{P}=\widehat{H}=90^0\) có \(\widehat{DAP}=\widehat{ABH}\) do cùng phụ với góc BAH và AD=AB
nên hai tam giác bằng nhau theo trường hợp cạnh huyền góc nhọn. do đó DP=AH
b. hoàn toàn tương tự ta chứng minh được EQ=AH do đó DP=EQ.
mà DP//EQ ( cùng vuông góc với AH) nên DPEQ là hình bình hành nên K là trung điểm DE