x : 5 và y :4 và \(x^2-y^2=1\)
Giúp mk với nha !!! Thank you trước
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Ta có:
\(y-x=25\Rightarrow y=25+x\)
Mà \(7x=4y\Rightarrow7x=4\cdot\left(25+x\right)\)
\(7x=100+4x\)
\(\Rightarrow7x-4x=100\)
\(3x=100\)
\(x=\frac{100}{3}\)
bài 1 :
Ta có: 7x=4y ⇔ x/4=y/7
áp dụng tính chất dãy tỉ số bằng nhau ta có
x/4=y/7=(y-x)/(7-4)=100/3
⇒x= 4 x 100/3=400/3 ; y = 7 x 100/3=700/3
bài 2
ta có x/5 = y/6 ⇔ x/20=y/24
y/8 = z/7 ⇔ y/24=z/21
⇒x/20=y/24=z/21
ADTCDTSBN(bài 1 có)
x/20=y/24=z/21=(x+y)/(20+24)=69/48=23/16
⇒x= 20 x 23/16 = 115/4
y= 24x 23/16=138/2
z=21x23/16=483/16
Bài 1 :
\(\frac{x}{2}=\frac{y}{3};\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)
Theo tính chất dãy tỉ số bằng nhau
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\Rightarrow x=16;y=24;z=30\)
bài 2 :
Đặt \(x=2k;y=5k\Rightarrow xy=10k^2=10\Leftrightarrow k^2=1\Leftrightarrow k=\pm1\)
Với k = 1 thì x = 2 ; y = 5
Với k = - 1 thì x = -2 ; y = -5
1 x 1 = 1
1 x 2 = 2
1 x 3 = 3
1 x 4 = 4
1 x 5 = 5
1 x 6 = 6
5 người k cho mk đầu tiên......
Trả lời :
1.1=1
1.2=2
1.3=3
1.4=4
1.5=5
1.6=6
Đổi ko ?
\(\downarrow\)
\(\hept{\begin{cases}x^3-6x^2y+9xy^2-4y^3=0\left(1\right)\\\sqrt{x-y}+\sqrt{x+y}=2\left(2\right)\end{cases}}\)
ĐKXĐ: \(x\ge y\ge0\)
ta có: (1)\(\Leftrightarrow\left(x^3-y^3\right)-3y^3-9x^2y+3x^2y+9xy^2=0\)
\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2\right)+3y\left(x^2-y^2\right)-9xy\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2+3y\left(x+y\right)-9xy\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x^2-5xy+4y^2\right)=0\)
\(\orbr{\begin{cases}x=y\\x^2-5xy+4y^2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=y\\\left(x-y\right)\left(x-4y\right)=0\end{cases}}}\)\(\Leftrightarrow\orbr{\begin{cases}x=y\\x=4y\end{cases}}\)
* Thay x=y vào phương trình (2), ta được: \(\sqrt{y-y}+\sqrt{2y}=2\Leftrightarrow y=2\Rightarrow x=y=2\)
* thay x=4y vào phương trình (2), ta được: \(\sqrt{4y-y}+\sqrt{4y+y}=2\)
\(\Leftrightarrow y=8-2\sqrt{15}\)\(\Rightarrow x=32-8\sqrt{15}\)
Vậy.......
(2x+1)(y-5)=12
Vì x,y \(\in N\)
=> 2x+1;y-5 \(\in N\)
=> 2x+1, y-5 \(\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
Vì 2x+1 là số lẻ => \(2x+1\in\left\{\pm1;\pm3\right\}\)
Xét bảng
2x+1 | 1 | -1 | 3 | -3 |
y-5 | 12 | -12 | 4 | -4 |
x | 0 | -1(ko tm) | 1 | -2( ko tm) |
y | 17 | 4 | 9 | 1 |
Vậy các cắp (x,y) tm là (0;17), (1;9)
\(\left(2x+1\right)\cdot\left(y-5\right)=12\)
<=>\(x=\frac{17-y}{2y-10}\)
thay x vào phương trình
=>\(\left(\frac{17-y+y-5}{y-5}\right)\cdot\left(y-5\right)=12\)
<=>\(\frac{12}{y-5}\cdot\left(y-5\right)=12\)
<=>\(12=12\)(Luôn đúng khi và chỉ khi y khác 5 )\(y\ne5,y\inℝ\)
giả sử thay y=1 ta có
=>\(2x=\frac{12}{1-5}-1\)
<=>\(2x=-4\)
=>\(x=-2\)
Vậy \(x=-2\)và \(y=1\)
lỡ tay bấm -_-; tiếp
F = \(-\left(\sqrt{2}.y-\frac{1}{8}\right)^2+\frac{1}{8}\)
Để F nhỏ nhất thì \(-\left(\sqrt{2}.y-\frac{1}{8}\right)^2\)nhỏ nhất=>\(\left(\sqrt{2}.y-\frac{1}{8}\right)^2=0\)
=> GTNN của F là 1/8 vs y= \(\frac{\sqrt{2}}{16}\)
bạn không cho \(x,y\)như thế nào thì tính sao được . Xem lại đề đi
địt mẹ mày con chó
Ta có: \(\frac{x}{5}=\frac{y}{4}\Leftrightarrow\left(\frac{x}{5}\right)^2=\left(\frac{y}{4}\right)^2\Leftrightarrow\frac{x^2}{25}=\frac{y^2}{16}\)
Áp dụng tính chất dãy tỉ số bằng nhau và \(x^2-y^2=1\), ta được:
\(\frac{x^2}{25}=\frac{y^2}{16}=\frac{x^2-y^2}{25-16}=\frac{1}{9}\)
\(\Rightarrow\hept{\begin{cases}x^2=\frac{25}{9}\Rightarrow x=\pm\frac{5}{3}\\y^2=\frac{16}{9}\Rightarrow y=\pm\frac{4}{3}\end{cases}}\)
Thay vào điều kiện bài toán ta được 2 cặp số: \(\left(x;y\right)=\left(\frac{5}{3};\frac{4}{3}\right);\left(-\frac{5}{3};-\frac{4}{3}\right)\)
Vậy: ......