Sin3x=Cosx.Cos2x (tan^2x+tan2x)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: ...
\(\frac{sinx}{cosx}+\frac{sin2x}{cos2x}=sin3x.cosx\)
\(\Leftrightarrow\frac{sinx.cos2x+cosx.sin2x}{cosx.cos2x}-sin3x.cosx=0\)
\(\Leftrightarrow\frac{sin3x}{cosx.cos2x}-sin3x.cosx=0\)
\(\Leftrightarrow sin3x\left(\frac{1}{cosx.cos2x}-cosx\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sin3x=0\Rightarrow x=\frac{k\pi}{3}\\\frac{1}{cosx.cos2x}-cosx=0\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow cos^2x.cos2x=1\)
\(\Leftrightarrow\left(\frac{1+cos2x}{2}\right)cos2x=1\)
\(\Leftrightarrow cos^22x+cos2x-2=0\Rightarrow\left[{}\begin{matrix}cos2x=1\\cos2x=-2\left(l\right)\end{matrix}\right.\)
\(\Rightarrow x=k\pi\)
\(\frac{\left(sin3x+cosx\right)sin3x+\left(cos3x+sinx\right)cos3x}{cos4x}\)
\(=\frac{sin^23x+sin3x.cosx+cos^23x+cos3x.sinx}{cos4x}=\frac{1+sin3x.cosx+cos3x.sinx}{cos4x}\)
\(=\frac{1+sin4x}{cos4x}=\frac{sin^22x+cos^22x+2sin2x.cos2x}{cos^22x-sin^22x}=\frac{\left(cos2x+sin2x\right)^2}{\left(cos2x-sin2x\right)\left(cos2x+sin2x\right)}\)
\(=\frac{cos2x+sin2x}{cos2x-sin2x}=\frac{1+\frac{sin2x}{cos2x}}{1-\frac{sin2x}{cos2x}}=\frac{1+tan2x}{1-tan2x}\)
a/
\(\left(\frac{sin2x}{cos2x}-\frac{sinx}{cosx}\right)cos2x=\left(\frac{sin2x.cosx-cos2x.sinx}{cos2x.cosx}\right).cos2x\)
\(=\frac{sin\left(2x-x\right)}{cosx}=\frac{sinx}{cosx}=tanx\)
b/
\(2\left(1-sinx\right)\left(1+cosx\right)=2+2cosx-2sinx-2sinxcosx\)
\(=1+sin^2x+cos^2x-2sinx+2cosx-2sinx.cosx\)
\(=\left(1-sinx+cosx\right)^2\)
c/
\(1+cotx+cot^2x+cot^3x=1+cotx+cot^2x\left(1+cotx\right)\)
\(=\left(1+cotx\right)\left(1+cot^2x\right)=\left(1+\frac{cosx}{sinx}\right)\left(1+\frac{cos^2x}{sin^2x}\right)=\frac{sinx+cosx}{sin^3x}\)
d/
\(\frac{cos3x}{sinx}+\frac{sin3x}{cosx}=\frac{cos3x.cosx+sin3x.sinx}{sinx.cosx}=\frac{cos\left(3x-x\right)}{\frac{1}{2}2sinx.cosx}=\frac{2cos2x}{sin2x}=2cot2x\)
1: ĐKXĐ: 3-cosx>0
=>cosx<3(luôn đúng)
2: ĐKXĐ: 1-sin 3x>=0
=>sin 3x<=1(luôn đúng)
3: ĐKXĐ: sin x<>0 và 2x<>pi/2+kpi
=>x<>kpi và x<>pi/4+kpi/2
4: ĐKXĐ: 2x-1>=0
=>x>=1/2
\(=\left(\dfrac{2sinx.cosx}{cos2x}-\dfrac{sinx}{cosx}\right)\left(2sinx.cosx-\dfrac{sinx}{cosx}\right)\)
\(=sinx\left(\dfrac{2cosx}{cos2x}-\dfrac{1}{cosx}\right).sinx\left(2cosx-\dfrac{1}{cosx}\right)\)
\(=sin^2x\left(\dfrac{2cos^2x-\left(2cos^2x-1\right)}{cosx.cos2x}\right)\left(\dfrac{2cos^2x-1}{cosx}\right)\)
\(=sin^2x\left(\dfrac{1}{cosx.cos2x}\right)\left(\dfrac{cos2x}{cosx}\right)=\dfrac{sin^2x}{cos^2x}=tan^2x\)
ĐKXĐ: cos2x<>0 và cosx<>0
=>x<>pi/2+kpi và x<>pi/4+kpi/2
PT\(\Leftrightarrow sin3x=cosx\cdot cos2x\cdot\left(\dfrac{sin^2x}{cos^2x}+\dfrac{sin2x}{cos2x}\right)\)
\(\Leftrightarrow sin3x\cdot cosx=sin^2x\cdot cos2x+sin2x\cdot cos^2x\)
\(\Leftrightarrow sinx\left(3-4sin^2x\right)\cdot cosx=sin^2x\cdot cos2x+sin2x\cdot cos^3x\)
=>sinx=0 hoặc \(\left(3-4sin^2x\right)cosx=sinx\cdot cos2x+2cos^3x\)
\(\Leftrightarrow\left[{}\begin{matrix}x=kpi\\x=\dfrac{pi}{4}+kpi\left(loại\right)\end{matrix}\right.\)