K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2018

\(A=x^2+20y^2+8xy-4y+2015\)

\(=\left(x^2+8xy+16y^2\right)+\left(4y^2-4y+1\right)+2014\)

\(=\left(x+4y\right)^2+\left(2y-1\right)^2+2014\ge2014\forall x\)

Dấu "=" xảy ra khi:

\(\hept{\begin{cases}x+4y=0\\2y-1=0\end{cases}\Rightarrow}\hept{\begin{cases}x=-2\\y=\frac{1}{2}\end{cases}}\)

Vậy GTNN của A là 2014 khi \(x=-2,y=\frac{1}{2}\)

\(B=\frac{x^2-2x+2016}{x^2}\)

\(=\frac{2016x^2-2.x.2016+2016^2}{2016x^2}\)

\(=\frac{\left(x^2-2.x.2016+2016^2\right)+2015x^2}{2016x^2}\)

\(=\frac{\left(x-2016\right)^2+2015x^2}{2016x^2}=\frac{\left(x-2016\right)^2}{2016x^2}+\frac{2015}{2016}\ge\frac{2015}{2016}\forall x\)

Dấu "=" xảy ra khi: \(x-2016=0\Rightarrow x=2016\)

Vậy GTNN của B là \(\frac{2015}{2016}\)khi x = 2016

16 tháng 12 2020

Ta có:

\(A=x^2+y^2+xy-2x-4y+2016\\ =\left(x+\dfrac{y}{2}-1\right)^2+\dfrac{3}{2}\left(y-1\right)^2+\dfrac{4027}{2}\\ \ge\dfrac{4027}{2}\)

Dấu bằng xảy ra khi và chỉ khi: 

\(\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=1\end{matrix}\right.\)

6 tháng 1 2018

P=x2+20y2+8xy-4y+2009=(x2+8xy+16y2)+(4y2-4y+1)+2008=(x+4y)2+(2y-1)2+2008 \(\ge\)2008
Dấu "=" xảy ra khi x=-2;y=1/2
Vậy min P=2008

15 tháng 10 2017

\(E=x^2+y^2-4x-2y+2003\)

    \(= \left(x^2-4x+4\right)+\left(y^2-2y+1\right)+1998\) \(=\left(x-2\right)^2+\left(y-1\right)^2+1998\ge1998\)

Vậy: Min E = 1998 khi \(\hept{\begin{cases}x=2\\y=1\end{cases}}\)

\(F=x\left(x+1\right)\left(x+2\right)\left(x+3\right)\)\(=\left[x\left(x+3\right)\right]\left[\left(x+1\right)\left(x+2\right)\right]=\left(x^2+3x\right)\left(x^2+3x+2\right)\) (1)

      Đặt: \(x^2+3x=t\) \(\Rightarrow x^2+3x+2=t+2\) thay vào phương trình (1) ta có:

\(t\left(t+2\right)=t^2+2t=t^2+2t+1-1=\left(t+1\right)^2-1\) \(=\left(x^2+3x+1\right)^2-1\ge-1\)

Vậy: Min F = -1 khi x=1

Do |x+2015| lớn hoặc = 0 với mọi x nên A bé hơn hoặc bằng -2016

Dấu "=" xảy ra khi và chỉ khi x+2015=0

=> x=-2015

Bài 3: 

a) Ta có: \(A=25x^2-20x+7\)

\(=\left(5x\right)^2-2\cdot5x\cdot2+4+3\)

\(=\left(5x-2\right)^2+3>0\forall x\)(đpcm)

d) Ta có: \(D=x^2-2x+2\)

\(=x^2-2x+1+1\)

\(=\left(x-1\right)^2+1>0\forall x\)(đpcm)

Bài 1: 

a) Ta có: \(A=x^2-2x+5\)

\(=x^2-2x+1+4\)

\(=\left(x-1\right)^2+4\ge4\forall x\)

Dấu '=' xảy ra khi x=1

b) Ta có: \(B=x^2-x+1\)

\(=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)

18 tháng 9 2016

câu a hình như sai, đúng ra phải là 2x^2 chứ nhỉ, theo đề tính ra thì thừa 2x

câu b nhỏ nhất = 2014, cần cách làm ko z

19 tháng 9 2016

Nếu được bạn cho mình cách giải đi ạ!

18 tháng 2 2021

3. Tìm giá trị nhỏ nhất của các biểu thứca. A = 4x2  4x 11b. B = (x - 1) (x 2) (x 3) (x 6)c. C = x2 - 2x y2 - 4y 7Ai nha... - Hoc24

a) Ta có: \(A=x^2-2x+5\)

\(=x^2-2x+1+4\)

\(=\left(x-1\right)^2+4\ge4\forall x\)

Dấu '=' xảy ra khi x=1

b) Ta có: \(B=x^2-x+1\)

\(=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)

 

c) Ta có: \(C=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)

\(=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)

\(=\left(x^2+5x\right)^2-36\ge-36\forall x\)

Dấu '=' xảy ra khi x(x+5)=0

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)

d) Ta có: \(x^2+5y^2-2xy+4y+3\)

\(=\left(x^2-2xy+y^2\right)+\left(4y^2+4y+1\right)+2\)

\(=\left(x-y\right)^2+\left(2y+1\right)^2+2\ge2\forall x,y\)

Dấu '=' xảy ra khi \(x=y=-\dfrac{1}{2}\)