A=x5-20x4+20x3-20x2+20x-2018 tại x=99
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có: 20=21-1=x-1
B=x6-20x5-20x4-20x3-20x2-20x+3
= x6-(x-1)x5-(x-1)x4-(x-1)x3-(x-1)x2-(x-1)x+3
=x6-x6+x5-x5+x4-x4+x3-x3+x2-x2+x+3
=x+3
=21+3
=24
x=21
=>x-1=20
B=x^6-x^5(x-1)-x^4(x-1)-...-x(x-1)+3
=x^6-x^6+x^5-x^5+x^5-...-x^2+x+3
=x+3
=21+3=24
Ta có:P=x3+y3+2xy=(x+y)3−3xy(x+y)+2xy=2013−601xyP=x3+y3+2xy=(x+y)3−3xy(x+y)+2xy=2013−601xy
Đặt S=xy=x(201−x)S=xy=x(201−x)
Dễ có:1≤x≤2001≤x≤200
S=200−(x−1)(x−200)≥0⇒Smin=200S=200−(x−1)(x−200)≥0⇒Smin=200
Không mất tính TQ giả sử x≤y⇒x≤100x≤y⇒x≤100
S=100.101−(x−100)(x−101)≤100.101⇒Smax=100.101
20 x 2 + 20 x 3 + 20 x 4 +20
=40 + 60 + 80 + 20
=100+80+20
=180+20
=200
a) 20x4+20x3+20x3
= 20 x ( 4+3 + 3)
= 20 x10
= 200
b) (6x9-54)x(25 +26+27+.........41+42)
= 0 x (25 +26+27+.........41+42)
= 0
20x4+20x3+20x3
= 20 x ( 4+3 + 3)
= 20 x10
= 200
b) (6x9-54)x(25 +26+27+.........41+42)
= 0 x (25 +26+27+.........41+42)
= 0
(x:10)x5=1000-80
(x:10)x5=920
(x:10) =920 : 5
(x:10) =184
x =184 x 10
x =1840
a) Có x = 99 => x+1 = 100
A = x5 - (x+1)x4 + (x+1)x3 + (x+1)x2 + (x+1)x - 9
= x5 - x5 + x4 - x4 + x3 - x3 + x2 - x2 + x - 9
= x - 9
=> A = 90
b) Chữa đề: x6 - 20x5 - 20x4 - 20x3 - 20x2 - 20x + 3
Có: x = 21 => x-1 = 20
B = x6 - (x-1)x5 - (x-1)x4 - (x-1)x3 - (x-1)x2 - (x-1)x + 3
= x6 - x6 + x5 - x5 + x4 - x4 + x3 - x3 + x2 - x + 3
= x + 3
=> B = 24
a) Vì\(x=99\Rightarrow x+1=100\)
Thay x+1=100 vào biểu thức A ta được :
\(A=x^5-\left(x+1\right)x^4+\left(x+1\right)x^3-\left(x+1\right)x^2+\left(x+1\right)x-9\)
\(=x^5-x^5-x^4+x^4+x^3-x^3-x^2+x^2+x+9\)
\(=x+9\)
\(=99+9\)
\(=108\)
b) Tương tự
\(A=x^5-100x^4+100x^3-100x^2+100x-9\)
\(\Rightarrow A=x^5-99x^4-x^4+99x^3+x^3-99x^2-x^2+99x+x-9\)
\(\Rightarrow A=x^4\left(x-99\right)-x^3\left(x-99\right)+x^2\left(x-99\right)+x\left(x-99\right)-9\)
\(\Rightarrow A=x^4\left(99-99\right)-x^3\left(99-99\right)+x^2\left(99-99\right)+x\left(99-99\right)-9\)
\(\Rightarrow A=x^4.0-x^3.0+x^2.0+x.0-9\)
\(\Rightarrow A=0-0+0+01-9=-9\)
Sửa đề: x=19
x=19 nên x+1=20
\(A=x^5-x^4\left(x+1\right)+x^3\left(x+1\right)-x^2\left(x+1\right)+x\left(x+1\right)-2018\)
\(=x^5-x^5-x^4+x^4+x^3-x^3-x^2+x^2+x-2018\)
=x-2018
=19-2018=-1999