K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2022

a: \(A=7^{n+4}-7^n=7^n\cdot\left(7^4-1\right)=7^n\cdot2400⋮10\)

=>7^n và 7^n+4 có chữ số tận cùng giống nhau

b: \(C=a^5-a=a\left(a^4-1\right)=a\left(a-1\right)\left(a+1\right)\left(a^2+1\right)\)

Vì 5 là số nguyên tố nên C chia hết cho 5(1)

Vì a(a-1) chia hết cho 2 nên C chia hết cho 2(2)

Từ (1) và (2) suy ra C chia hết cho 10

=>a^5 và a có hai chữ số tận cùng giống nhau

6 tháng 7 2015

Lay 4 chu so thi dong du voi 10000  

5^1994=5^2*(5^4)^498  

5^4=625 dong du 625 mod 10000  

625^2=390625 dong du 625 mod 10000  

=>625^n luon dong du 625 mod 10000  

=>(5^4)^498 dong du 625 mod 10000  

=>(5^2)*(5^4)^498 dong du (5^2)*625 mod 10000  

hay la 5^1994 dong du 15625 mod 10000

 Vay 4 chu so tan cung cua 5^1994 la 5625 

​kết luận chữ số tận cũg có 4 chữ số

25 tháng 12 2017

ngu tất

2 tháng 9 2018

a ,  abba

ab0

12 tháng 1 2018

a, Xét : 6n-n = 5n 

Vì n chẵn nên 5n có tận cùng là 0

=> n và 6n có chữ số tận cùng giống nhau

c, Xét : n^5-n = n.(n^4-1) = n.(n^2-1).(n^2+1) = (n-1).n.(n+1).(n^2-4+5) = (n-2).(n-1).n.(n+1).(n+2) + 5.(n-1).n.(n+1)

Ta thấy : n-2;n-1;n;n+1;n+2 là 5 số tự nhiên liên tiếp nên có 1 số chia hết cho 2 và 1 số chia hết cho 3

=> (n-2).(n-1).n.(n+1).(n+2) chia hết cho 10 ( vì 2 và 5 là 2 số nguyên tố cùng nhau )

Lại có : (n-1).n.(n+1) chia hết cho 2 nên 5.(n-1).n.(n+1) chia hết cho 10

=> n^5-n chia hết cho 10

=> n^5-n có tận cùng là 0

=> n^5 và n có chữ số tận cùng như nhau

Tk mk nha

12 tháng 1 2018

mình cần phần b bn làm đc ko

16 tháng 8 2016

a) Cách 1. Xét từng trường hợp n tận cùng bằng 0, 2, 4, 6, 8 thì 6n tận cùng cũng như vậy.

     Cách 2. Xét hiệu 6n−n=5n chia hết cho 10 vì n chẵn.b) Nếu n tận cùng bằng 1 hoặc 9 thì n2 tận cùng bằng 1, do đó n4 tận cùng bằng 1.     Nếu n tận cùng bằng 3 hoặc 7 thì n2 tận cùng bằng 9, do đó n4 tận cùng bằng 1.     Nếu n tận cùng bằng 4 hoặc 6 thì n2 tận cùng bằng 6, do đó n4 tận cùng bằng 6.     Nếu n tận cùng bằng 2 hoặc 8 thì n2 tận cùng bằng 4, d
29 tháng 9 2017

a) n là số chẵn

\(\Rightarrow\) n = 2k

\(\Rightarrow\) 6n = 12k

Vì 12 có tận cùng như 2 nên 12k có tận cùng như 2k.

\(\Rightarrow\) n và 6n có tận cùng như nhau

\(\Rightarrow\) ĐPCM

20 tháng 9 2023

a) Xét hiệu : \(n^5-n\)

Đặt : \(A\text{=}n^5-n\)

Ta có : \(A\text{=}n.\left(n^4-1\right)\text{=}n.\left(n^2-1\right)\left(n^2+1\right)\)

\(A\text{=}n.\left(n+1\right).\left(n-1\right).\left(n^2+1\right)\)

Vì : \(n.\left(n+1\right)\) là tích hai số tự nhiên liên tiếp .

\(\Rightarrow A⋮2\)

Ta có : \(A\text{=}n\left(n+1\right)\left(n-1\right)\left(n^2+1\right)\)

\(A\text{=}n\left(n+1\right)\left(n-1\right)\left(n^2-4+5\right)\)

\(A\text{=}n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)+5n.\left(n+1\right)\left(n-1\right)\)

Ta thấy : \(\left\{{}\begin{matrix}n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)⋮5\\5n\left(n-1\right)\left(n+1\right)⋮5\end{matrix}\right.\) vì tích ở trên là tích của 5 số liên tiếp nên chia hết cho 5.

Do đó : \(A⋮10\)

\(\Rightarrow A\) có chữ số tận cùng là 0.

Suy ra : đpcm.

b) Vì \(n⋮3̸\) nên n có dạng : \(3k+1hoặc3k+2\left(k\in N\right)\)

Với : n= 3k+1

Thì : \(n^2\text{=}9k^2+6k+1\)

Do đó : \(n^2\) chia 3 dư 1.

Với : n=3k+2

Thì : \(n^2\text{=}9k^2+12k+4\text{=}9k^2+12k+3+1\)

Do đó : \(n^2\) chia 3 dư 1.

Suy ra : đpcm.