Xin phép được nhờ quý thầy cô giáo và các bạn giúp đỡ em bài toán nâng cao lớp 8 học kỳ 1.
#đường_trung_bình_của_tam_giác.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\dfrac{2bc}{2bc+a^2}+\dfrac{2ac}{2ac+b^2}+\dfrac{2ab}{2ab+c^2}\le2\)
\(\Leftrightarrow\dfrac{2bc}{2bc+a^2}-1+\dfrac{2ac}{2ac+b^2}-1+\dfrac{2ab}{2ab+c^2}-1\le2-3\)
\(\Leftrightarrow\dfrac{a^2}{2bc+a^2}+\dfrac{b^2}{2ac+b^2}+\dfrac{c^2}{2ab+c^2}\ge1\)
BĐT trên đúng theo C-S:
\(\dfrac{a^2}{2bc+a^2}+\dfrac{b^2}{2ac+b^2}+\dfrac{c^2}{2ab+c^2}\ge\dfrac{\left(a+b+c\right)^2}{a^2+b^2+c^2+2ab+2bc+2ca}=1\)
Dấu "=" xảy ra khi \(a=b=c\)
Với p = 2 => 8p2 +1 = 33 (loại)
Với p = 3 => 8p2 + 1 = 73 (tm)
Với p > 3 => Đặt p = 3k + 1 ; p = 3k + 2 (k \(\in Z^+\))
Với p = 3k + 1 => 8p2 + 1 = 8(3k + 1)2 + 1
= 72k2 + 48k + 9 = 3(24k2 + 16k + 3) \(⋮3\)(loại)
Với p = 3k + 2 => 8p2 + 1 = 8(3k + 2)2 + 1
= 72k2 + 96k + 33 = 3(24k2 + 32k + 11) \(⋮3\)(loại)
Vậy p = 3 thì 8p2 + 1 \(\in P\)
- Với \(p=2\) ko thỏa mãn
- Với \(p=3\Rightarrow8p^2+1=73\) là số nguyên tố (thỏa mãn)
- Với \(p>3\Rightarrow p^2\equiv1\left(mod3\right)\)
\(\Rightarrow p^2=3k+1\)
\(\Rightarrow8p^2+1=8\left(3k+1\right)+1=24k+9=3\left(8k+3\right)\) là số lớn hơn 3 và chia hết cho 3
\(\Rightarrow8p^2+1\) là hợp số (ktm)
Vậy \(p=3\) là SNT duy nhất thỏa mãn yêu cầu
Với p = 2 => 2p + p2 = 8 (loại)
Với p = 3 => 23 + 32 = 17 (loại)
Nhận thấy với p > 3 => p lẻ
Đặt p = 3k + 1 ; p = 3k + 2 (k \(\in Z^+\))
Khi đó P = 2p + p2
= (2p + 1) + (p2 - 1)
Vì p lẻ => 2p + 1 = (2 + 1).(2p - 1 - 2p - 2 + ... + 1) \(⋮3\)(1)
Với p = 3k + 1 => p2 - 1 = (p - 1)(p + 1) = (3k + 1 - 1)(3k + 1 + 1)
= 3k(3k + 2) \(⋮3\) (2)
Từ (1) ; (2) => P \(⋮3\)(loại)
Với p = 3k + 2 => p2 - 1 = (p - 1)(p + 1) = (3k + 2 - 1)(3k + 2 + 1)
= 3(k + 1)(3k + 1) \(⋮\)3 (3)
Từ (1) ; (3) => P \(⋮3\)
=> p = 3 là giá trị cần tìm
Dạ hay quá, em cám ơn thầy ạ
Em gặp mấy bài toán về chủ đề : Đồng Dư Thức- khó quá
May được thầy giúp đỡ ạ!
Xét p=2\(\Rightarrow p^4+29=45=3^2.5\), có 6 ước số là SND, loại
Xét p=3\(\Rightarrow p^4+29=110=2.5.11\), có 8 ước số là SND, tm
Xét p=5\(\Rightarrow p^4+29=654=2.3.109\) , có 8 ước số là SND, tm
Xét p\(\ge6\). Do p là SNT nên p có dạng \(6k+1\) hoặc \(6k-1\) (k\(\in N\)*)
TH1: p=6k+1
Khi đó ta có \(p^4+29=\left(6k+1\right)^4+29\equiv1+29\equiv0\left(mod6\right)\)
Ta cũng có: \(p^4+29=\left(6k+1\right)^4+29\equiv0\left(mod5\right)\)
vì \(\left(6k+1\right)⋮5̸\)
\(\Rightarrow p^4+29=6.5.a=2.3.5.a\)(a là STN)\(\Rightarrow p^4+29\) có nhiều hơn 8 ước số nguyên dương, loại.
TH2: p=6k-1. Chứng minh tương tự ta thấy không có p thoả mãn
\(\Rightarrow p\ge6\) không thoả mãn
Vậy....
Hình vẽ minh họa cho bài toán