K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(BC=\sqrt{5^2+8^2}=\sqrt{89}\left(cm\right)\)

Xét ΔABC vuông tại A có tan C=AB/AC=5/8

nên góc C=32 độ

=>góc B=58 độ

b: Xét ΔCHA có CD/CA=CE/CH

nên DE//AH và DE=1/2AH

\(BH\cdot HC=AH^2=\left(2\cdot DE\right)^2=4DE^2\)

21 tháng 3 2019

A B C H K I E F

Xét \(\Delta BAC\) Và   \(\Delta ACH\) có :

      \(\widehat{BAC}\)\(=\)\(\widehat{AHC}\) ( cùng = 900 )

           \(\widehat{C}\)là góc chung

 \(\Rightarrow\) \(\Delta BAC\)\(~\)\(\Delta AHC\) ( g - g )     (1)

 \(\Rightarrow\)\(\frac{BC}{AC}=\frac{AB}{AH}\)\(\Rightarrow BC.AH=AB.AC\)

b)  Xét \(\Delta AHC\)có :

  K là trung điểm của CH

  I là trung điểm của AH

\(\Rightarrow\)IK // AC

Do IK // AC :

\(\Rightarrow\)\(\Delta HIK\)\(~\)\(\Delta HAC\) (2)

Từ (1) và (2) =)  \(\Delta HIK\)\(~\)\(\Delta ABC\)

Do \(HE\)\(\perp\)\(AB\)\(\Rightarrow\)\(\widehat{A\text{E}H}\)= 900

      \(HF\)\(\perp\)\(AC\)\(\Rightarrow\)\(\widehat{FHE}\)= 900

Xét tứ giác AEHF có:

\(\widehat{BAC}=\widehat{A\text{E}H}=\widehat{FHE}\)\(=90^0\)

\(\Rightarrow\)AEHF là hình chữ nhật \(\Rightarrow\) AE = HF 

Xét \(\Delta ABC\)\(\perp\)tại \(A\)

Áp dụng định lí py - ta - go

BC=  AB2 +  AC2

52 =  3+ AC2

AC2 = 16

AC = 4 ( cm )

Ta có ;  \(S_{\Delta ABC}\)\(=\frac{AB.AC}{2}\)\(=\frac{3.4}{2}=6\)cm2

                \(S_{\Delta ABC}=\frac{1}{2}.BC.AH\)\(=\frac{1}{2}.5.AH=2,5.AH\)

  \(\Rightarrow2,5.AH=6\)\(\Rightarrow AH=2,4\)cm

Xét \(\Delta AHC\)\(\perp\)tại A

Áp dụng định lí py - ta - go

AC2 = AH2 +  HC2

42 = (2,4)2 + CH2

CH2 = 10,24

CH = 3,2 cm

Ta có :  \(S_{\Delta AHC}=\frac{AH.AC}{2}=\)\(\frac{2,4.3,2}{2}=3,84\)cm2

            \(S_{\Delta AHC}=\frac{1}{2}.AC.HF\)\(=\frac{1}{2}.4.HF=2.HF\)

\(\Rightarrow\)2.HF = 3.84

           HF = 1.92 cm

\(\Rightarrow A\text{E}=1,92\)( Vì HF = AE , cmt)

19 tháng 2 2021
17 tháng 12 2021

undefined

26 tháng 1 2018

Từng bài 1 thôi nha!

Mình làm bài 3 cho dễ

Bn tự vẽ hình

a) CM tg ABH=tg ACH (ch-cgv)

=> HC=HB=2 góc tương ứng 

Nên H là trung điểm BC

=> HB=HC=BC:2=8:2=4 ; góc BAH= góc CAH

b) Có: tg ABH vuông tại H (AH vuông góc BC)

=> AH2+BH2=AB => AH2+42=52 => AH2=9

Mà AH>O Nên AH=3

c) Xét tg ADH và tg AEH có:

\(\Delta ADH=\Delta AEH\left(ch-gh\right)\hept{\begin{cases}\widehat{ADH}=\widehat{AEH}=90^o\\AHcanhchung\\\widehat{DAH}=\widehat{EAH}\left(\Delta ABH=\Delta ACH\right)\end{cases}}\)

=> HD=HE(2 góc tương ứng)

=> tg HDE cân tại H 

9 tháng 9 2019

A B C E D M H G

b) Chứng minh tam giác BEC đồng dạng tam giác ADC

Xét \(\Delta CAB\)và \(\Delta CDE\) có:

^CAB = ^CDE (=1v)

^C chung 

=>  \(\Delta CAB\)~\(\Delta CDE\)

=> \(\frac{CB}{CE}=\frac{CA}{CD}\) (1) 

Xét \(\Delta CAD\)và \(\Delta CBE\)có:

\(\frac{CB}{CE}=\frac{CA}{CD}\)( từ (1))

và \(\widehat{C}\)chung

=>  \(\Delta CAD\)\(\Delta CBE\)

c) Chứng tam giác ABE vuông cân.

+) Ta có: AB \(\perp\)AC (\(\Delta\)ABC vuông )

mà E \(\in\)AC

=> AB \(\perp\)AE => \(\Delta\)ABE vuông  

+) Theo (a) =>   ^DAC = ^EBC  

Gọi N là giao điểm của AD và BE 

Xét \(\Delta\)DNB và  \(\Delta\)ENA có:

^ENA = ^DNB ( đối đỉnh)

^NBD = ^NAE (    vì ^DAC = ^EBC )  

=>  \(\Delta\)DNB ~  \(\Delta\)ENA  

=> ^NDB = ^NEA  

Xét  \(\Delta\)ABE và  \(\Delta\)HAD có:

^AEB = ^HDA ( vì ^NDB = ^NEA  )  (1)

^^BAE = ^AHD ( =1v)

=>   \(\Delta\)ABE ~  \(\Delta\)HAD

=> ^HAD = ^ ABE  (20

mà \(\Delta\)AHD có: AH=HD => \(\Delta\)AHD cân => ^HAD =^ HDA (3)

Từ (1) ; (2) ; (3) => ^ABE =^BEA =>\(\Delta\)ABE cân 

Vậy \(\Delta\) ABE vuông cân tại A

d) Ta có: M là trung điểm BE => AM là đường trung tuyến \(\Delta\)ABE mà \(\Delta\)ABE vuông cân tại A

=> AM là đường phân giác ^A của \(\Delta\)ABE

=> AG là đường phân giác ^A của \(\Delta\)ABC

Theo tính chất đường phân giác ta có: \(\frac{GB}{GC}=\frac{AB}{AC}\)

Mà \(\Delta\)ABH  ~\(\Delta\)CAH ( dễ tự chứng minh)

=> \(\frac{AB}{CA}=\frac{AH}{CH}\)

=> \(\frac{GB}{GC}=\frac{AH}{CH}\Rightarrow\frac{GB}{AH}=\frac{GC}{CH}=\frac{GB+GC}{AH+CH}=\frac{BC}{AH+CH}\)( tính chất dãy tỉ số bằng nhau)

=> \(\frac{GC}{BC}=\frac{AH}{AH+CH}=\frac{DH}{AH+CH}\)( vì AH=DH)

15 tháng 4 2018

(tớ mới giải được câu a)

Xét tam giác AHB và CHA => AH/CH = HB/AH mà AH=HD => tỉ số đồng dạng