\(\frac{1}{6}\)+\(\frac{1}{18}\)+\(\frac{1}{36}\)+\(\frac{1}{60}\)+\(\frac{1}{90}\)\(\frac{1}{126}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{18}+\frac{1}{36}+\frac{1}{60}+...+\frac{1}{168}\)
\(\frac{1}{3}A=\frac{1}{54}+\frac{1}{108}+...+\frac{1}{504}\)
\(\frac{1}{3}A=\frac{1}{6.9}+\frac{1}{9.12}+...+\frac{1}{21.24}\)
\(=\frac{1}{6}-\frac{1}{9}+\frac{1}{9}-\frac{1}{12}+...+\frac{1}{21}-\frac{1}{24}\)
\(=\frac{1}{6}-\frac{1}{24}\)
\(=\frac{4-1}{24}=\frac{3}{24}=\frac{1}{8}\)
=> \(A=\frac{1}{8}:\frac{1}{3}\)\(=\frac{3}{8}\)
a) 5/30+15/90+25/150+35/210+45/270
=1/6+1/6+1/6+1/6+1/6
=1/6 x 5
=5/6
b) 1/2+1/6+1/12+1/20+....+1/56
=1/1x2+1/2x3+1/3x4+1/4x5+.....1/7x8
=1/1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+.......-1/7+1/7-1/8
=1/1-1/8
=7/8
c) mình chịu
\(1+\frac{-1}{60}+\frac{19}{120}< \frac{x}{36}< \frac{58}{90}+\frac{59}{72}+\frac{-1}{60}\)
=> \(\frac{137}{120}< \frac{x}{36}< \frac{521}{360}\)
=> \(\frac{411}{360}< \frac{10x}{360}< \frac{521}{360}\)
=> 411 < 10x < 521
=> x \(\in\){ 42,43,44,...,52}
\(=-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\right)\)
\(=-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\right)\)
\(=-\left(1-\frac{1}{10}\right)=-\frac{9}{10}\)
\(N=\frac{1}{3.6}+\frac{1}{6.9}+...+\frac{1}{30.33}\)
=\(\frac{1}{3}\left(\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{9}+...+\frac{1}{30}-\frac{1}{33}\right)\)
=\(\frac{1}{3}\left(\frac{1}{3}-\frac{1}{33}\right)=\frac{10}{33}\)
\(M=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{4970}\)
\(M=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{70.71}\)
\(M=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{70}-\frac{1}{71}\)
\(M=1-\frac{1}{71}\)
\(M=\frac{70}{71}\)
\(N=\frac{1}{18}+\frac{1}{54}+\frac{1}{108}+...+\frac{1}{990}\)
\(N=\frac{1}{3.6}+\frac{1}{6.9}+\frac{1}{9.12}+...+\frac{1}{30.33}\)
\(N=\frac{1}{3}.\left(\frac{3}{3.6}+\frac{3}{6.9}+\frac{3}{9.12}+...+\frac{3}{30.33}\right)\)
\(N=\frac{1}{3}.\left(\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{9}+\frac{1}{9}-\frac{1}{12}+...+\frac{1}{30}-\frac{1}{33}\right)\)
\(N=\frac{1}{3}.\left(\frac{1}{3}-\frac{1}{33}\right)\)
\(N=\frac{1}{3}.\frac{10}{33}\)
\(N=\frac{10}{99}\)
=1/2.3+1/3.6+1/6.6+1/6.10+1/10.9+1/9.14
=1/2-1/3+1/3-1/6+1/6-1/6+1/6-1/10+1/10-1/9+1/9-1/14
=1/2-1/14
=6/14=3/7
\(\frac{1}{6}+\frac{1}{18}+\frac{1}{36}+\frac{1}{60}+\frac{1}{90}+\frac{1}{126}\)
\(=\frac{1}{2\cdot3}+\frac{1}{3\cdot6}+\frac{1}{6\cdot6}+\frac{1}{6\cdot10}+\frac{1}{10\cdot9}+\frac{1}{9\cdot14}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{6}+\frac{1}{6}-\frac{1}{10}+\frac{1}{10}-\frac{1}{9}+\frac{1}{9}-\frac{1}{14}\)
\(=\frac{1}{2}-\frac{1}{14}\)
\(=\frac{3}{7}\)