1. Biết xÔy và mÂn có Ox // Am, Oy // An. C/m xÔy+mÂn=180o. ( theo 2 cách). mik đag cần gấp, jup mik với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Tam giác vuông AOM = tam giác vuông BOM vì có chung cạnh huyền OM và 2 góc nhọn bằng nhau => OA = OB. Vì góc AOB bằng 60 độ nên tam giác OAB đều.
b) Theo câu a suy ra MA = MB. Lại có góc AME = BMF (đối đỉnh)
suy ra tam giác vuông BMF = tam giác vuông AME. (có cặp cạnh góc vuông và góc nhọn bằng nhau)
c) Theo a OA = OB, theo b suy ra AE = BF => OE = OF => Tam giác OEF cân tại O => H là trung điểm của EF cũng là chân đường phân giác => H thuộc đường phân giác trong góc O => O M H thẳng hàng.
Bạn tự vẽ hình và làm 2 câu a, b nhé!
c) Ta có: \(\Delta AEM=\Delta BFM\left(cmt\right)\)\(\Rightarrow\hept{\begin{cases}AE=BF\\EM=MF\\\widehat{AEM}=\widehat{BFM}\end{cases}}\)
Ta có: \(\hept{\begin{cases}OA+AE=OE\\OB+BF=OF\end{cases}}\)mà \(\hept{\begin{cases}OA=OB\left(cmt\right)\\AE=BF\left(cmt\right)\end{cases}}\)\(\Rightarrow OE=OF\)\(\Rightarrow\Delta OEF\)cân \(\Rightarrow\widehat{OEF}=\widehat{OFE}\)
Ta có: \(\hept{\begin{cases}\widehat{AEM}+\widehat{MEH}=\widehat{OEF}\\\widehat{BFM}+\widehat{MFH}=\widehat{OFE}\end{cases}}\)mà \(\hept{\begin{cases}\widehat{AEM}=\widehat{BFM}\left(cmt\right)\\\widehat{OEF}=\widehat{OFE}\left(cmt\right)\end{cases}}\)\(\Rightarrow\widehat{MEH}=\widehat{MFH}\)
Xét \(\Delta EMH\)và\(\Delta FMH\)có: \(\hept{\begin{cases}EM=MF\left(cmt\right)\\\widehat{MEH}=\widehat{MFH}\left(cmt\right)\\EH=HF\left(gt\right)\end{cases}}\)\(\Rightarrow\Delta MEH=\Delta MFH\left(c-g-c\right)\)\(\Rightarrow\widehat{EHM}=\widehat{FHM}\)mà \(\widehat{EHM}+\widehat{FHM}=180^o\)\(\Rightarrow\widehat{EHM}=\widehat{EHM}=90^o\)\(\Rightarrow MH⊥EF\left(1\right)\)
Xét \(\Delta OEF\)có: \(\hept{\begin{cases}FA⊥OE\\EB⊥OF\\FA\Omega EB=M\end{cases}}\)\(\Rightarrow OM⊥EF\left(2\right)\)
Từ (1) và (2) \(\Rightarrow O,M,H\)thẳng hàng
P/s: Bài này mình giải theo cách của mình. Nếu còn cách ngắn hơn thì bạn nghe mọi người góp ý sau nhé!