K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b: Ta có: \(\left(4x^4-3x^3\right):\left(-x^3\right)+\left(15x^2+6x\right):3x=0\)

\(\Leftrightarrow-4x+3+5x+2=0\)

\(\Leftrightarrow x=-5\)

10 tháng 8 2017

post từng câu một thôi bn nhìn mệt quá

29 tháng 12 2021

Bài 1:

\(a,=\dfrac{x^2+2xy+y^2-x^2+2xy-y^2+2y^2}{2\left(x-y\right)\left(x+y\right)}=\dfrac{2y\left(x+y\right)}{2\left(x-y\right)\left(x+y\right)}=\dfrac{y}{x-y}\\ b,Sửa:\left(\dfrac{9}{x^3-9x}+\dfrac{1}{x+3}\right):\left(\dfrac{x-3}{x^2+3x}-\dfrac{x}{3x+9}\right)\\ =\dfrac{9+x^2-3x}{x\left(x-3\right)\left(x+3\right)}:\dfrac{3x-9-x^2}{3x\left(x+3\right)}=\dfrac{x^2+3x+9}{x\left(x-3\right)\left(x+3\right)}\cdot\dfrac{-3x\left(x+3\right)}{x^2-3x+9}\\ =\dfrac{-3}{x-3}\)

Bài  2:

\(a,\Leftrightarrow2x\left(x-5\right)\left(x+5\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=5\\x=-5\end{matrix}\right.\\ b,\Leftrightarrow x^3+x^2+x+a=\left(x+1\right)\cdot a\left(x\right)\\ \text{Thay }x=-1\Leftrightarrow-1+1-1+a=0\Leftrightarrow a=1\)

13 tháng 11 2023

a: \(y=\left(x^2-1\right)^2\)

=>\(y'=2\left(x^2-1\right)'\left(x^2-1\right)\)

\(=4x\left(x^2-1\right)\)

Đặt y'>0

=>\(x\left(x^2-1\right)>0\)

TH1: \(\left\{{}\begin{matrix}x>0\\x^2-1>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x>0\\x^2>1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>0\\\left[{}\begin{matrix}x>1\\x< -1\end{matrix}\right.\end{matrix}\right.\)

=>\(x>1\)

TH2: \(\left\{{}\begin{matrix}x< 0\\x^2-1< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x< 0\\-1< x< 1\end{matrix}\right.\Leftrightarrow-1< x< 0\)

Đặt y'<0

=>\(x\left(x^2-1\right)< 0\)

TH1: \(\left\{{}\begin{matrix}x>0\\x^2-1< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x>0\\x^2< 1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>0\\-1< x< 1\end{matrix}\right.\)

=>0<x<1

TH2: \(\left\{{}\begin{matrix}x< 0\\x^2-1>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x< 0\\x^2>1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< 0\\\left[{}\begin{matrix}x>1\\x< -1\end{matrix}\right.\end{matrix}\right.\)

=>x<-1

Vậy: Hàm số đồng biến trên các khoảng \(\left(1;+\infty\right);\left(-1;0\right)\)

Hàm số nghịch biến trên các khoảng (0;1) và \(\left(-\infty;-1\right)\)

b: \(y=\left(3x+4\right)^3\)

=>\(y'=3\left(3x+4\right)'\left(3x+4\right)^2\)

\(\Leftrightarrow y'=9\left(3x+4\right)^2>=0\forall x\)

=>Hàm số luôn đồng biến trên R

c: \(y=\left(x+3\right)^2\left(x-1\right)\)

=>\(y=\left(x^2+6x+9\right)\left(x-1\right)\)

=>\(y'=\left(x^2+6x+9\right)'\left(x-1\right)+\left(x^2+6x+9\right)\left(x-1\right)'\)

=>\(y'=\left(2x+6\right)\left(x-1\right)+x^2+6x+9\)

=>\(y'=2x^2-2x+6x-6+x^2+6x+9\)

=>\(y'=3x^2-2x+3\)

\(\Leftrightarrow y'=3\left(x^2-\dfrac{2}{3}x+1\right)\)

=>\(y'=3\left(x^2-2\cdot x\cdot\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{8}{9}\right)\)

=>\(y'=3\left(x-\dfrac{1}{3}\right)^2+\dfrac{8}{3}>=\dfrac{8}{3}>0\forall x\)

=>Hàm số luôn đồng biến trên R

d: \(y=\left(2x+2\right)\left(x^3-1\right)\)

=>\(y'=\left(2x+2\right)'\left(x^3-1\right)+\left(2x+2\right)\left(x^3-1\right)'\)

\(=2\left(x^3-1\right)+3x^2\left(2x+2\right)\)

\(=2x^3-2+6x^3+6x^2\)

\(=8x^3+6x^2-2\)

Đặt y'>0

=>\(8x^3+6x^2-2>0\)

=>\(x>0,46\)

Đặt y'<0

=>\(8x^3+6x^2-2< 0\)

=>\(x< 0,46\)

Vậy: Hàm số đồng biến trên khoảng tầm \(\left(0,46;+\infty\right)\)

Hàm số nghịch biến trên khoảng tầm \(\left(-\infty;0,46\right)\)

AH
Akai Haruma
Giáo viên
9 tháng 11 2021

Lời giải:
Áp dụng BĐT $|a|+|b|\geq |a+b|$ ta có:

$|x-1|+|x-4|=|x-1|+|4-x|\geq |x-1+4-x|=3$

$|x-2|+|y-3|\geq 0$

$\Rightarrow |x-1|+|x-2|+|y-3|+|x-4|\geq 3$

Dấu "=" xảy ra khi:
\(\left\{\begin{matrix} (x-1)(4-x)\geq 0\\ x-2=0\\ y-3=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=2\\ y=3\end{matrix}\right.\)

15 tháng 8 2020

dùng bunhia cho phần mẫu số là ra 

28 tháng 9 2021

a) \(\left|3x-\dfrac{1}{2}\right|+\left|\dfrac{1}{4}y+\dfrac{3}{5}\right|=0\)

Do \(\left|3x-\dfrac{1}{2}\right|,\left|\dfrac{1}{4}y+\dfrac{3}{5}\right|\ge0\forall x,y\)

\(\Rightarrow\left\{{}\begin{matrix}3x-\dfrac{1}{2}=0\\\dfrac{1}{4}y+\dfrac{3}{5}=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{6}\\y=-\dfrac{12}{5}\end{matrix}\right.\)

b) \(\left|\dfrac{3}{2}x+\dfrac{1}{9}\right|+\left|\dfrac{5}{7}y-\dfrac{1}{2}\right|\le0\)

Do \(\left|\dfrac{3}{2}x+\dfrac{1}{9}\right|,\left|\dfrac{5}{7}y-\dfrac{1}{2}\right|\ge0\forall x,y\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{3}{2}x+\dfrac{1}{9}=0\\\dfrac{5}{7}y-\dfrac{1}{2}=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{2}{27}\\y=\dfrac{7}{10}\end{matrix}\right.\)

13 tháng 11 2023

a: \(y=\left(5x-10\right)^4\)

=>\(y'=4\cdot\left(5x-10\right)'\cdot\left(5x-10\right)^3\)

\(=4\cdot5\cdot\left(5x-10\right)^3=20\left(5x-10\right)^3\)

Đặt y'>0

=>\(20\left(5x-10\right)^3>0\)

=>\(\left(5x-10\right)^3>0\)

=>5x-10>0

=>x>2

Đặt y'<0

=>\(20\left(5x-10\right)^3< 0\)

=>\(\left(5x-10\right)^3< 0\)

=>5x-10<0

=>x<2

Vậy: hàm số đồng biến trên \(\left(2;+\infty\right)\)

Hàm số nghịch biến trên \(\left(-\infty;2\right)\)

c: \(y=\left(x^3-1\right)^3\)

=>\(y'=3\left(x^3-1\right)'\cdot\left(x^3-1\right)^2\)

\(=9x^2\left(x^3-1\right)^2>=0\forall x\)

=>Hàm số luôn đồng biến trên R

d: \(y=\left(x^2-1\right)\left(x+2\right)\)

=>\(y'=\left(x^2-1\right)'\left(x+2\right)+\left(x^2-1\right)\left(x+2\right)'\)

\(=2x\left(x+2\right)+x^2-1\)

\(=2x^2+4x+x^2-1=3x^2+4x-1\)

Đặt y'>0

=>\(3x^2+4x-1>0\)

=>\(\left[{}\begin{matrix}x< \dfrac{-2-\sqrt{7}}{3}\\x>\dfrac{-2+\sqrt{7}}{3}\end{matrix}\right.\)

Đặt y'<0

=>\(3x^2+4x-1< 0\)

=>\(\dfrac{-2-\sqrt{7}}{3}< x< \dfrac{-2+\sqrt{7}}{3}\)

Vậy: Hàm số đồng biến trên các khoảng \(\left(-\infty;\dfrac{-2-\sqrt{7}}{3}\right);\left(\dfrac{-2+\sqrt{7}}{3};+\infty\right)\)

Hàm số nghịch biến trên khoảng \(\left(\dfrac{-2-\sqrt{7}}{3};\dfrac{-2+\sqrt{7}}{3}\right)\)

b: \(y=\left(-x-1\right)\left(x+2\right)^4\)

=>\(y'=\left(-x-1\right)'\left(x+2\right)^4+\left(-x-1\right)\left[\left(x+2\right)^4\right]'\)

\(=-\left(x+2\right)^4+\left(-x-1\right)\cdot4\left(x+2\right)'\left(x+2\right)^3\)

\(=-\left(x+2\right)^4+4\left(x+2\right)^3\cdot\left(-x-1\right)\)

\(=-\left(x+2\right)^3\left[\left(x+2\right)+4\left(x+1\right)\right]\)

\(=-\left(x+2\right)^2\cdot\left(x+2\right)\left(5x+6\right)\)

Đặt y'<0

=>\(-\left(x+2\right)^2\left(x+2\right)\left(5x+6\right)< 0\)

=>(x+2)(5x+6)>0

TH1: \(\left\{{}\begin{matrix}x+2>0\\5x+6>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x>-2\\x>-\dfrac{6}{5}\end{matrix}\right.\Leftrightarrow x>-\dfrac{6}{5}\)

TH2: \(\left\{{}\begin{matrix}x+2< 0\\5x+6< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x< -2\\x< -\dfrac{6}{5}\end{matrix}\right.\Leftrightarrow x< -2\)

Đặt y'>0

=>(x+2)(5x+6)<0

TH1: \(\left\{{}\begin{matrix}x+2>0\\5x+6< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x>-2\\x< -\dfrac{6}{5}\end{matrix}\right.\Leftrightarrow-2< x< -\dfrac{6}{5}\)

TH2: \(\left\{{}\begin{matrix}x+2< 0\\5x+6>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x< -2\\x>-\dfrac{6}{5}\end{matrix}\right.\Leftrightarrow x\in\varnothing\)

Vậy: HSĐB trên các khoảng \(\left(-\infty;-2\right);\left(-\dfrac{6}{5};+\infty\right)\)

HSNB trên khoảng \(\left(-2;-\dfrac{6}{5}\right)\)