K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 10 2018

a) ta có

\(\left\{{}\begin{matrix}199^{20}=\left(199^4\right)^5=1568239201^5\\2003^{15}=\left(2003^3\right)^5=80360540276^5\end{matrix}\right.\)

vì 1568239201 < 80360540276 ⇒ 19920<200315

các câu khác làm tương tự

28 tháng 9 2018

a/ 

\(37^{1320}=\left(37^2\right)^{660}=1369^{660}\)

\(11^{1979}< 11^{1980}=\left(11^3\right)^{660}=1331^{660}\)

\(\Rightarrow1363^{660}>1331^{660}\Rightarrow37^{1320}>11^{1979}\)

b/

\(27^{11}=\left(3^3\right)^{11}=3^{33}\)

\(81^8=\left(3^4\right)^8=3^{32}\)

\(\Rightarrow27^{11}>81^8\)

d/

\(3^{39}< 3^{40}=\left(3^2\right)^{20}=9^{20}< 9^{21}< 11^{21}\)

e/ \(5^{36}=\left(5^3\right)^{12}=125^{12}\)

\(11^{24}=\left(11^2\right)^{12}=121^{12}\)

\(\Rightarrow5^{36}>11^{24}\)

g/ \(21^{15}=3^{15}.7^{15}\)

\(27.49^8=3^3.\left(7^2\right)^8=3^3.7^{16}\)

\(\frac{21^{15}}{27.49^8}=\frac{3^{15}.7^{15}}{3^3.7^{16}}=\frac{3^{12}}{7}>1\Rightarrow21^{15}>27.49^8\)

f/ \(199^{20}=\left(199^4\right)^5\)

\(2003^{15}=\left(2003^3\right)^5\)

\(2003^5>1990^5\)

\(\frac{1990^5}{199^4}=\frac{199^5.10^5}{199^4}=199.10^5>1\)

\(\Rightarrow2003^5>1990^5>199^4\Rightarrow2003^{15}>199^{20}\) 

28 tháng 9 2018

37^1320=(37^2)^660=1369^660

2 tháng 12 2016

a,<          e,<        d,>        b,>              

28 tháng 10 2018

a, 202203=(101.2)203

=101203.2203

=101202.2202.202

b, 203202=(101,5.2)202

=101,5202.2202

còn lại dễ

b, 199010+19909=19909.1990+19909=19909.(1990+1)=19909.1991

199120=199119.1991

=>199010+19909<199120

c, 111979<111980=(113)660=1331660

371320=(372)660=1369660

=>111979<371320

8 tháng 6 2016

b)

\(199^{20}< 200^{20}=200^{15}\cdot200^5=200^{15}\cdot2^5\cdot100^5=B\)(1)

mà \(2^5=32< 10^5\)=> \(B< 200^{15}\cdot10^5\cdot10^{10}=200^{15}\cdot10^{15}=2000^{15}< 2003^{15}\)

Vậy, \(199^{20}< 2003^{15}\).

8 tháng 6 2016

a)

Ta có: \(81>64\Rightarrow3^4>4^3\Rightarrow\left(3^4\right)^{111}>\left(4^3\right)^{111}\Rightarrow3^{444}>4^{333}\)(1)

Ta lại có \(111^{444}>111^{333}\)(2)

Nhân (1) và (2) vế với vế ta được: \(3^{444}\cdot111^{444}>4^{333}\cdot111^{333}\Rightarrow\left(3\cdot111\right)^{444}>\left(4\cdot111\right)^{333}\)

Hay: \(333^{444}>444^{333}\).

AH
Akai Haruma
Giáo viên
18 tháng 7 2024

Lời giải:

a. $31>17; 11>4$ nên $31^{11}> 17^4$

b. $11^{1979}< 11^{1980}=(11^3)^{660}=1331^{660}< 1369^{660}=(37^2)^{660}=37^{1320}$

12 tháng 12 2016

a, <

b,>

c, >