Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ta có
\(\left\{{}\begin{matrix}199^{20}=\left(199^4\right)^5=1568239201^5\\2003^{15}=\left(2003^3\right)^5=80360540276^5\end{matrix}\right.\)
vì 1568239201 < 80360540276 ⇒ 19920<200315
các câu khác làm tương tự
Ta có: \(11^{1979}< 11^{1980}=\left(11^3\right)^{660}=1331^{660}\)
\(37^{1321}>37^{1320}=\left(37^2\right)^{660}=1369^{660}\)
Vì \(1369^{660}>1331^{660}\)Nên \(11^{1979}< 37^{1321}\)
ta có 11^1979<11^1980=(11^3)^660=1331^660
mà 37^1320=(37^2)^660=1369^660
mà 1331^660>1369^660 vậy 11^1979<37^1320
P/s: ^ là mũ nhé
2)Gọi 3 số đó lần lượt là n;n+1 và n+2
Trong 3 số có 1 số chẵn chia hết cho 2
Vậy \(n\left(n+1\right)\left(n+2\right)⋮2\)
Trong 3 số tự nhiên luôn có 1 số chia hết cho 3
Vậy \(n\left(n+1\right)\left(n+2\right)⋮3\)
Tích của chúng đều chia hết cho [2;3] ( nguyên tố cùng nhau) nên tích của chúng chia hết cho 6
d)
đặt A = 1 + 2 + 22 + ... + 280
2A = 2 + 22 + 23 + ... + 281
2A - A = ( 2 + 22 + 23 + ... + 281 ) - ( 1 + 2 + 22 + ... + 280 )
A = 281 - 1 > 281 - 2
e)
đặt \(A=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{899}{900}\)
\(A=\left(1-\frac{1}{4}\right)+\left(1-\frac{1}{9}\right)+\left(1-\frac{1}{16}\right)+...+\left(1-\frac{1}{900}\right)\)
\(A=\left(1+1+1+...+1\right)-\left(\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{900}\right)\)
\(A=29-\left(\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{900}\right)\)
đặt \(B=\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{900}\)
\(B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{30^2}\)
\(B< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{29.30}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{29}-\frac{1}{30}\)
\(=1-\frac{1}{30}=\frac{29}{30}< 1\)
\(\Rightarrow A< 29\)
So sánh C và D biết
C=1+13+13^2+...+13^13/1+13+13^2+...+13^12
D=1+11+11^2+...+11^13/1+11+11^2+...+11^12
a.Vì \(\frac{17}{19}< 1\) và \(\frac{19}{17}>1\)
nên \(\frac{17}{19}< 1< \frac{19}{17}\)
hay \(\frac{17}{19}< \frac{19}{17}\)
b) \(\frac{15}{7}=2\frac{1}{7}\) và \(\frac{25}{12}=2\frac{1}{12}\)
Vì \(2\frac{1}{7}>2\frac{1}{12}\) nên \(\frac{15}{7}>\frac{25}{12}\)
\(A=\frac{54.107-53}{53.107+54}\)
\(\Leftrightarrow A=\frac{53.107+107-53}{53.107+54}\)
\(\Leftrightarrow A=\frac{53.107+54}{53.107+54}\)
\(\Leftrightarrow A=1\)
\(B=\frac{135.269-133}{134.269+135}\)
\(\Leftrightarrow B=\frac{134.269+269-133}{134.269+135}\)
\(\Leftrightarrow B=\frac{134.269+135}{134.269+135}\)
\(\Leftrightarrow B=1\)
Vì 1 = 1 nên A =B
e) \(\left(2x-15\right)^5=\left(2x-15\right)^3\)
\(\Rightarrow\left(2x-15\right)^5-\left(2x-15\right)^3=0\)
\(\Rightarrow\left(2x-15\right)^3\cdot\left(2x-15\right)^2-\left(2x-15\right)^3=0\)
\(\Rightarrow\left(2x-15\right)^3\cdot\left[\left(2x-15\right)^2-1\right]=0\)
\(\Rightarrow\left(2x-15\right)^3=0\) hoặc \(\left(2x-15\right)^2-1=0\)
+)TH1: \(\left(2x-15\right)^3=0\)
\(\Rightarrow2x-15=0\)
\(\Rightarrow2x=15\)
\(\Rightarrow x=\frac{15}{2}\)
+)TH2: \(\left(2x-15\right)^2-1=0\)
\(\Rightarrow\left(2x-15\right)^2=1\)
\(\Rightarrow\left[{}\begin{matrix}2x-15=1\\2x-15=-1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}2x=16\\2x=14\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=8\\x=7\end{matrix}\right.\)
Vậy \(x=\frac{15}{2}\) hoặc \(x=8\) hoặc \(x=7\)
a) \(2^x-17=15\Rightarrow2^x=32\)
Mà \(2^5=32\Rightarrow x=5\)
Vậy x = 5
b)\(\left(7x-11\right)^3=2^5\cdot5^2+200\)
\(\Rightarrow\left(7x-11\right)^3=1000\)
\(\Rightarrow\left(7x-11\right)^3=10^3\)
\(\Rightarrow7x-11=10\)
\(\Rightarrow7x=21\)
\(\Rightarrow x=3\)
Vậy x = 3
c)\(x^{10}=1^x\Rightarrow x^{10}=1\)(số 1 có luỹ thừa là bao nhiêu thì vẫn là 1 thui)\(\Rightarrow x=1\)
Vậy x = 1
d) \(x^{10}=x\Rightarrow x^{10}-x=0\)
\(\Rightarrow x\left(x^9-1\right)=0\)
\(\Rightarrow x=0\) hoặc \(x^9-1=0\)
+)TH1: \(x=0\)
+)TH2: \(x^9-1=0\Rightarrow x^9=1\Rightarrow x=1\)
Vậy x = 0 hoặc x = 1
a,\(3^{200}=3^{2.100}=\left(3^2\right)^{100}=9^{100}\)
\(2^{300}=2^{3.100}=\left(2^3\right)^{100}=8^{100}\)
Vì 9100>8100 nên 3200>2300
b,\(3^{375}=3^{5.75}=\left(3^5\right)^{75}=243^{75}\)
\(5^{225}=5^{3.75}=\left(5^3\right)^{75}=125^{75}\)
Vì 24375>12575 nên 3375>5225
c,\(99^{20}=99^{2.10}=\left(99^2\right)^{10}=9801^{10}< 9999^{10}\)
Vật 9920<999910
d,\(2^{91}=2^{13.7}=\left(2^{13}\right)^7=8192^7\)
\(5^{35}=5^{5.7}=\left(5^5\right)^7=3125^7\)
Vì 81927>31257 nên 291>535
a,< e,< d,> b,>