K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 10 2018

ta có: \(125\ge5^{n+1}\ge25\)

\(5^3\ge5^{n+1}\ge5^2\)

=> n + 1 thuộc { 2;3}

=> n + 1= 2 =>  n = 1

n + 1 = 3 => n = 2

KL:...

2 tháng 11 2016

mình làm 1 câu lm mẫu thôi nhé

a) \(2.16\ge2^n>4\)

\(\Rightarrow2.2^4\ge2^n>2^2\)

\(\Rightarrow2^5\ge2^n>2^2\)

\(\Rightarrow5\ge n>2\)

\(\Rightarrow n=5;4;3\)

tíc mình nha

25 tháng 9 2019

ban giai thich cu the hon dc ko

9 tháng 3 2022

-Vì \(n+1,n+13\) là các số chính phương nên đặt \(n+1=a^2,n+13=b^2\)

\(\Rightarrow b^2-a^2=n+13-\left(n+1\right)=12\)

\(\Rightarrow\left(b-a\right)\left(b+a\right)=12=\left[{}\begin{matrix}1.12\\2.6\\3.4\end{matrix}\right.\)

-Vì \(b-a< b+a\)

\(\Rightarrow\left[{}\begin{matrix}b-a=1;b+a=12\\b-a=2;b+a=6\\b-a=3;b+a=4\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}b=\dfrac{13}{2};a=\dfrac{11}{2}\left(loại\right)\\b=4;a=2\left(nhận\right)\\b=\dfrac{7}{2};a=\dfrac{1}{2}\left(loại\right)\end{matrix}\right.\)

-Vậy \(n=3\) thì n+1 và n+12 đều là các số chính phương.

 

6 tháng 11 2021

\(\Rightarrow3\left(n+1\right)+11⋮n+1\\ \Rightarrow11⋮n+1\\ \Rightarrow n+1\inƯ\left(11\right)=\left\{1;11\right\}\\ \Rightarrow n\in\left\{0;10\right\}\)

27 tháng 2 2017

Để 4n - 1 chai hết cho 7

Thì 4n - 1 thuộc B(7) = {0;7;14;21;28;35;42;................}

Suy ra 4n = {1;8;15;22;29;36;43;50;57;......................}