Tìm x : (x+3/5).(x+1) < 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) (x - 3)2 - 5.(x - 2) + 5 = 0.
<=> x^2 - 6x + 9 - 5x + 10 + 5 = 0
<=> x^2 - 11x + 24 = 0
<=> (x-3)(x-8)=0
<=> x = 3 hoặc x = 8
=>x-1;x+5 trái dấu mọi x
Ta có:x-1-(x+5)=x-1-x-5=-6<0
\(\Rightarrow\hept{\begin{cases}x-1< 0\\x+5>0\end{cases}}\Rightarrow\hept{\begin{cases}x< 1\\x>-5\end{cases}}\)
=> -5<x<1=>x\(\in\){-4;-3;-2;-1;0}
muốn biểu thức <0 thì =>x ={bé hơn 1 lớn hơn -5}
muốn biểu thức >0 thì => x={bé hơn 4 lớn hơn -3}
muốn biểu thức >0 thì => x={lớn hơn 3.......}
muốn biểu thức >0 thì => x={lớn hơn 3...}
Mk làm theo thức tự của bn sắp xếp đừng lầm nha nhớ k nữa nha
Làm theo công thức: tích bằng 0 thì một trong x thừa số bằng 0 rồi xét các trường hợp
\(1,x.\left(x+7\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+7=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-7\end{cases}}}\)
\(2,\left(x+12\right).\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+12=0\\x-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-12\\x=3\end{cases}}}\)
\(3,\left(-x+5\right).\left(3-x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}-x+5=0\\3-x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=5\\x=3\end{cases}}}\)
4/ \(x.\left(2+x\right).\left(7-x\right)=0\)
\(\hept{\begin{cases}x=0\\2+x=0\\7-x=0\end{cases}}\) => \(\hept{\begin{cases}x=0\\x=-2\\x=7\end{cases}}\)
Vậy \(x=\left\{0,-2,7\right\}\)
5/ \(\left(x-1\right).\left(x+2\right).\left(-x-3\right)=0\)
\(\hept{\begin{cases}x-1=0\\x+2=0\\-x-3=0\end{cases}}\)=> \(\hept{\begin{cases}x=1\\x=-2\\x=-3\end{cases}}\)
b) 5x(x-2000)-x+2000=0
\(\Rightarrow5x\left(x-2000\right)-\left(x-2000\right)=0\\ \Rightarrow\left(x-2000\right)\left(5x-1\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}x-2000=0\\5x-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0+2000\\5x=0+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2000\\5x=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2000\\x=\dfrac{1}{5}\end{matrix}\right.\)
\(a,\Leftrightarrow\left[{}\begin{matrix}x+8=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-8\\x=5\end{matrix}\right.\\ b,\Leftrightarrow\left(x-4\right)\left(x+5\right)=0\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-5\end{matrix}\right.\\ c,\Leftrightarrow\left(x+1\right)\left(3x-6\right)=0\\ \Leftrightarrow3\left(x-2\right)\left(x+1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\\ d,\Leftrightarrow\left(x-3\right)\left(5x-10\right)=0\\ \Leftrightarrow5\left(x-2\right)\left(x-3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=3\\x=2\end{matrix}\right.\)
a) \(\left(x+8\right)\left(x-5\right)=0\) \(\Rightarrow\left[{}\begin{matrix}x+8=0\\x-5=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-8\\x=5\end{matrix}\right.\)
b) \(x\left(x-4\right)+5\left(x-4\right)=0\) \(\Rightarrow\left(x-4\right)\left(x+5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-4=0\\x+5=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=4\\x=-5\end{matrix}\right.\)
c) \(3x\left(x+1\right)-6\left(x+1\right)=0\) \(\Rightarrow\left(3x-6\right)\left(x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}3x-6=0\\x+1=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
d) \(5x\left(x-3\right)+10\left(3-x\right)=0\) \(\Rightarrow5x\left(x-3\right)-10\left(x-3\right)=0\)
\(\Rightarrow\left(5x-10\right)\left(x-3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}5x-10=0\\x-3=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)
1) Do x ∈ Z và 0 < x < 3
⇒ x ∈ {1; 2}
2) Do x ∈ Z và 0 < x ≤ 3
⇒ x ∈ {1; 2; 3}
3) Do x ∈ Z và -1 < x ≤ 4
⇒ x ∈ {0; 1; 2; 3; 4}
a) \(\left(3x-1\right).\left(\frac{-1}{2}x+5\right)=0\)
\(\Rightarrow3x-1=0\Rightarrow3x=1\Rightarrow x=\frac{1}{3}\)
\(\frac{-1}{2}x+5=0\Rightarrow\frac{-1}{2}x=-5\Rightarrow x=10\)
b) \(3\left(x-\frac{1}{2}\right)-5\left(x+\frac{3}{5}\right)=x+\frac{1}{5}\)
\(3x-\frac{3}{2}-5x-3=x+\frac{1}{5}\)
\(\Rightarrow3x-5x-x=\frac{1}{5}+\frac{3}{2}+3\)
\(-3x=\frac{47}{10}\)
\(x=\frac{-47}{30}\)
c) \(-5.\left(x+\frac{1}{5}\right)-\frac{1}{2}\left(x-\frac{2}{3}\right)=\frac{3}{2}x-\frac{5}{6}\)
\(-5x-1-\frac{1}{2}x+\frac{1}{3}=\frac{3}{2}x-\frac{5}{6}\)
\(-5x-\frac{1}{2}x-\frac{3}{2}x=\frac{-5}{6}+1-\frac{1}{3}\)
\(-7x=\frac{-1}{6}\)
\(x=\frac{1}{42}\)
d) \(3.\left(3x-\frac{1}{2}\right)^3+\frac{1}{9}=0\)
\(3.\left(3x-\frac{1}{2}\right)^3=\frac{-1}{9}\)
\(\left(3x-\frac{1}{2}\right)^3=\frac{-1}{27}\)
\(\left(3x-\frac{1}{2}\right)^3=\left(\frac{-1}{3}\right)^3\)
\(\Rightarrow3x-\frac{1}{2}=\frac{-1}{3}\)
\(3x=\frac{1}{6}\)
\(x=\frac{1}{18}\)
Học tốt nhé bn!
\(\left(x+\frac{3}{5}\right)\left(x-1\right)< 0\)
TH1 : \(\hept{\begin{cases}x+\frac{3}{5}>0\\x+1< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x>\frac{-3}{5}\\x< -1\end{cases}\Leftrightarrow}\frac{-3}{5}< x< -1\left(tm\right)}\)
TH2 : \(\hept{\begin{cases}x+\frac{3}{5}< 0\\x+1>0\end{cases}\Leftrightarrow\hept{\begin{cases}x< \frac{-3}{5}\\x>-1\end{cases}\Leftrightarrow}-1< x< \frac{-3}{5}\left(L\right)}\)
Vậy điều kiện của x là -3/5 < x < -1 ( tự tìm x )
thank you