K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

x/-4=y/-7=z/3

=-2x+y+5z/-2.(-4)+(-7)+5.3

= 2x-3y-6z/2.(-4)-3.(-7)-6.3

=> -2x+y+5z/16=2x-3y-6z/-5

=> -2x+y+5z/2x-3y-6z

=16/-5

Vậy A = 16/-5

Đặt x/-4=y/-7=z/3=k
=>x=-4k,y=-7k,z=3k(*)
Thay (*) vào A ta có:
A=(-2x+y+5z)/(2x-3y-6z)
  =(8k-7k+15k)/(-8k+21k-18k)
  =16k/-5k
  =16/-5
Vậy A=-16/5

1 tháng 11 2015

vì \(\frac{x}{-4}=\frac{y}{-7}=\frac{z}{3}=K\)

=> x = -4k ; y = -7k, z = 3k

\(\frac{x}{-4}=\frac{y}{-7}=\frac{z}{3}=\frac{-2.\left(-4k\right)+\left(-7k\right)+5.3k}{2.\left(-4k\right)-3.\left(-7k\right)-6.3k}\)

\(=\frac{16k}{-5k}=\frac{16}{-5}=\frac{-16}{5}\)

nhớ tick 9 cái ****

27 tháng 12 2019

đặt\(\frac{x}{-4}=\frac{y}{-7}=\frac{z}{3}=k\Rightarrow\hept{\begin{cases}x=-4k\\y=-7k\\z=3k\end{cases}}\). Thay vào A ta được:

\(A=-\frac{2\times\left(-4k\right)+\left(-7k\right)+5\times\left(3k\right)}{2\times\left(-4k\right)-3\times\left(-7k\right)-6\times\left(3k\right)}=-\frac{-8k-7k+15k}{-8k+21k-18k}=-\frac{0}{-5k}=0\)

Vậy A=0

25 tháng 10 2017

Thôi khó lắm, bn hỏi cô giáo đi .

Mik thực sự không biết làm .

Bài này chỉ có những người lớp 7, 8, 9 mới làm đc .

Mik mới chỉ có lớp ..... 6 mà thôi !

Bạn thông cảm cho mik nha ............!!

25 tháng 10 2017

Bài Này Có Tên Là Gì Trong SGK Bạn ??

a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}=\dfrac{2x+3y-z-2-6+3}{2\cdot2+3\cdot3-4}=5\)

Do đó: x-1=10; y-2=15; z-3=20

=>x=11; y=17; z=23

b: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}=\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)

Do đó: x=18; y=16; z=15

c: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{3}=\dfrac{y}{2}\\\dfrac{y}{5}=\dfrac{z}{7}\end{matrix}\right.\Leftrightarrow\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{14}\)

Trường hợp 1: 2x-3y+5z=-1

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{14}=\dfrac{2x-3y+5z}{2\cdot15-3\cdot10+5\cdot14}=\dfrac{-1}{70}\)

Do đó: x=-15/70=-3/14; y=-10/70=-1/7; z=-14/70=-1/5

Trường hợp 2: 2x-3y+5z=1

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{14}=\dfrac{2x-3y+5z}{2\cdot15-3\cdot10+5\cdot14}=\dfrac{1}{70}\)

Do đó: x=15/70=3/14; y=1/7; z=1/5

30 tháng 10 2015

vì \(\frac{x}{-4}=\frac{y}{-7}=\frac{z}{3}=K\)

  =>x=-4k; y=-7k; z=3k

   \(\frac{x}{-4}=\frac{y}{-7}=\frac{z}{3}\) =\(\frac{-2.\left(-4k\right)+\left(-7k\right)+5.3k}{2.\left(-4k\right)-3.\left(-7k\right)-6.3k}\)

  =\(\frac{16k}{-5k}=\frac{16}{-5}=\frac{-16}{5}\)