K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 10 2015

vì \(\frac{x}{-4}=\frac{y}{-7}=\frac{z}{3}=K\)

  =>x=-4k; y=-7k; z=3k

   \(\frac{x}{-4}=\frac{y}{-7}=\frac{z}{3}\) =\(\frac{-2.\left(-4k\right)+\left(-7k\right)+5.3k}{2.\left(-4k\right)-3.\left(-7k\right)-6.3k}\)

  =\(\frac{16k}{-5k}=\frac{16}{-5}=\frac{-16}{5}\)

 

a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}=\dfrac{2x+3y-z-2-6+3}{2\cdot2+3\cdot3-4}=5\)

Do đó: x-1=10; y-2=15; z-3=20

=>x=11; y=17; z=23

b: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}=\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)

Do đó: x=18; y=16; z=15

c: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{3}=\dfrac{y}{2}\\\dfrac{y}{5}=\dfrac{z}{7}\end{matrix}\right.\Leftrightarrow\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{14}\)

Trường hợp 1: 2x-3y+5z=-1

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{14}=\dfrac{2x-3y+5z}{2\cdot15-3\cdot10+5\cdot14}=\dfrac{-1}{70}\)

Do đó: x=-15/70=-3/14; y=-10/70=-1/7; z=-14/70=-1/5

Trường hợp 2: 2x-3y+5z=1

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{14}=\dfrac{2x-3y+5z}{2\cdot15-3\cdot10+5\cdot14}=\dfrac{1}{70}\)

Do đó: x=15/70=3/14; y=1/7; z=1/5

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

x/-4=y/-7=z/3

=-2x+y+5z/-2.(-4)+(-7)+5.3

= 2x-3y-6z/2.(-4)-3.(-7)-6.3

=> -2x+y+5z/16=2x-3y-6z/-5

=> -2x+y+5z/2x-3y-6z

=16/-5

Vậy A = 16/-5

Đặt x/-4=y/-7=z/3=k
=>x=-4k,y=-7k,z=3k(*)
Thay (*) vào A ta có:
A=(-2x+y+5z)/(2x-3y-6z)
  =(8k-7k+15k)/(-8k+21k-18k)
  =16k/-5k
  =16/-5
Vậy A=-16/5

11 tháng 9 2016

a) Tính chất của dãy tỉ số bằng nhau

b) Đặt 2x = 3y = 5z =k

=> x= k/2

y= k/3

x= k/5

Thay x=   ,  y=   ,  z=   vào x-y+z=11

Tự làm tiếp

1 tháng 11 2015

vì \(\frac{x}{-4}=\frac{y}{-7}=\frac{z}{3}=K\)

=> x = -4k ; y = -7k, z = 3k

\(\frac{x}{-4}=\frac{y}{-7}=\frac{z}{3}=\frac{-2.\left(-4k\right)+\left(-7k\right)+5.3k}{2.\left(-4k\right)-3.\left(-7k\right)-6.3k}\)

\(=\frac{16k}{-5k}=\frac{16}{-5}=\frac{-16}{5}\)

nhớ tick 9 cái ****

30 tháng 10 2015

có nhiều cách giải,cách đặt k:

a/b=c/d=k  thì a=bk;c=dk

thay vào:

\(\frac{a^2+b^2}{c^2+d^2}=\frac{\left(bk\right)^2+b^2}{\left(dk\right)^2+d^2}=\frac{b^2.k^2+b^2}{d^2.k^2+d^2}=\frac{b^2\left(k+1\right)}{d^2\left(k+1\right)}=\frac{b^2}{d^2}\)   (1)

ab/cd=.....   (2)

từ (1) và (2) =>đpcm

27 tháng 12 2019

đặt\(\frac{x}{-4}=\frac{y}{-7}=\frac{z}{3}=k\Rightarrow\hept{\begin{cases}x=-4k\\y=-7k\\z=3k\end{cases}}\). Thay vào A ta được:

\(A=-\frac{2\times\left(-4k\right)+\left(-7k\right)+5\times\left(3k\right)}{2\times\left(-4k\right)-3\times\left(-7k\right)-6\times\left(3k\right)}=-\frac{-8k-7k+15k}{-8k+21k-18k}=-\frac{0}{-5k}=0\)

Vậy A=0