2x x 4 = 128
( x-1 ) 2 = ( x-1 ) 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,2^x.4=128\\2^x.2^2=2^7\\ 2^x=\dfrac{2^7}{2^2}=2^{7-2}=2^5\\ Vậy:x=5\\ ----\\ b,\left(2x+1\right)^3=125=5^3\\ \Rightarrow 2x+1=5\\ 2x=5-1=4\\ x=\dfrac{4}{2}=2\\ ----\\ c,2x-2^6=6\\ 2x=6+2^6=6+64\\ 2x=70\\ x=\dfrac{70}{2}=35\\ ----\\ d,49.7^x=2401\\ 7^x=\dfrac{2401}{49}=49=7^2\\ Vậy:x=2\)
3:
a: 3^x*3=243
=>3^x=81
=>x=4
b; 2^x*16^2=1024
=>2^x=4
=>x=2
c: 64*4^x=16^8
=>4^x=4^16/4^3=4^13
=>x=13
d: 2^x=16
=>2^x=2^4
=>x=4
a) \(\left(x-1\right)^3=8=2^3\)
\(x-1=2\)
\(x=2+1=3\)
b) \(7^{2x-6}=49=7^2\)
\(2x-6=2\)
\(2x=6+2=8\)
\(x=8:2=4\)
c) \(\left(2x-14\right)^7=128=2^7\)
\(2x-14=2\)
\(2x=14+2=16\)
\(x=16:2=8\)
d) \(x^4\cdot x^5=5^3\cdot5^6=5^4\cdot5^5\)
\(x=5\)
e) \(3\cdot\left(x+2\right):7\cdot4=120\)
\(x+2=120:3\cdot7:4\)
\(x+2=70\)
\(x=70-2=68\)
Lời giải:
a. $(x-1)^3=8=2^3$
$\Rightarrow x-1=2$
$\Rightarrow x=3$
b. $7^{2x-6}=49=7^2$
$\Rightarrow 2x-6=2$
$\Rightarrow 2x=8$
$\Rightarrow x=4$
c. $(2x-14)^7=128=2^7$
$\Rightarrow 2x-14=2$
$\Rightarrow 2x=16$
$\Rightarrow x=18$
d.
$x^4.x^5=5^3.5^6$
$x^9=5^9$
$\Rightarrow x=5$
e.
$3(x+2):7=120:4=30$
$3(x+2)=30.7=210$
$x+2=210:3=70$
$x=70-2=68$
2: =(2x+1)^2-y^2
=(2x+1+y)(2x+1-y)
3: =x^2(x^2+2x+1)
=x^2(x+1)^2
4: =x^2+6x-x-6
=(x+6)(x-1)
5: =-6x^2+3x+4x-2
=-3x(2x-1)+2(2x-1)
=(2x-1)(-3x+2)
6: =5x(x+y)-(x+y)
=(x+y)(5x-1)
7: =2x^2+5x-2x-5
=(2x+5)(x-1)
8: =(x^2-1)*(x^2-4)
=(x-1)(x+1)(x-2)(x+2)
9: =x^2(x-5)-9(x-5)
=(x-5)(x-3)(x+3)
a) \(2^x.4=128\Rightarrow2^x=32=2^5\Rightarrow x=5\)
b) \(x^{17}=x\Rightarrow x^{17}-x=0\Rightarrow x\left(x^{16}-1\right)=0\Rightarrow x=0\) hay \(x=1\)
c) \(\left(2x-2\right)^3=8\Rightarrow\left(2x-2\right)^3=2^3\Rightarrow2x-2=2\Rightarrow2x=4\Rightarrow x=2\)
d) \(\left(x-6\right)^3=\left(x-6\right)^2\Rightarrow\left(x-6\right)^3-\left(x-6\right)^2=0\)
\(\Rightarrow\left(x-6\right)^2\left(x-6-1\right)=0\Rightarrow\Rightarrow\left(x-6\right)^2\left(x-7\right)=0\)
\(\Rightarrow x-6=0\) hay \(x-7=0\Rightarrow x=6\) hay \(x=7\)
e) \(\left(7x-11\right)^3=2^5.5^2+200\Rightarrow\left(7x-11\right)^3=32.25+200\)
\(\Rightarrow\left(7x-11\right)^3=1000=10^3\Rightarrow7x-11=10\Rightarrow7x=21\Rightarrow x=3\)
f) \(3+2^{x-1}=24-\left[4^2-\left(2^2-1\right)\right]\Rightarrow2^{x-1}=24-\left[16-3\right]-3\)
\(\Rightarrow2^{x-1}=24-13-3\Rightarrow2^{x-1}=8=2^3\Rightarrow2x-1=3\Rightarrow2x=4\Rightarrow x=2\)
a) 2x . 4 = 128
<=> 2x = 32
<=> 2x = 25
<=> x = 5
b) x15 = x1
<=> x15 - x = 0
<=> x(x14 - 1) = 0
<=> \(\orbr{\begin{cases}x=0\\x^{14}-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x^{14}=1^{14}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}\)
c) (2x + 1)3 = 125
<=> (2x + 1)3 = 53
<=> 2x + 1 = 5
<=> 2x = 4
<=> x = 2
d) (x - 5)4 = (x - 5)6
<=> (x - 5)6 - (x - 5)4 = 0
<=> (x - 5)4[(x - 5)2 - 1] = 0
<=> \(\orbr{\begin{cases}\left(x-5\right)^4=0\\\left(x-5\right)^2-1=0\end{cases}}\)
Khi (x - 5)4 = 0 => x - 5 = 0 => x = 5
Khi (x - 5)2 - 1 = 0 <=> (x - 5)2 = 12 <=> \(\orbr{\begin{cases}x-5=1\\x-5=-1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=6\\x=4\end{cases}}\)
2^(2+x)=2^7
2+x=7
x=5
(x-1)^3-(x-1)^2=0
(x-1)^2.(x-1-1)=0
(x-10)^2.(x-2)=0
=>+)x-10=0=>x=10
+)x-2=0 =>x=2
\(2^x\cdot4=128\)
\(2^x=32=2^5\)
Vậy x = 5
\(\left(x-1\right)^2=\left(x-1\right)^3\)
\(\left(x-1\right)^2-\left(x-1\right)^3=0\)
\(\left(x-1\right)^2-\left(x-1\right)^2\cdot\left(x-1\right)=0\)
\(\left(x-1\right)^2\left(1-x+1\right)=0\)
\(\left(x-1\right)\left(2-x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-1=0\\2-x=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}\)