K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Trên cùng một nửa mặt phẳng bờ chứa tia OA, ta có: \(\widehat{AOB}< \widehat{AOC}\left(40^0< 80^0\right)\)

nên tia OB nằm giữa hai tia OA và OC

b) Ta có: tia OB nằm giữa hai tia OA và OC(cmt)

nên \(\widehat{AOB}+\widehat{BOC}=\widehat{AOC}\)

\(\Leftrightarrow\widehat{BOC}+40^0=80^0\)

\(\Leftrightarrow\widehat{BOC}=40^0\)

mà \(\widehat{AOB}=40^0\left(gt\right)\)

nên \(\widehat{AOB}=\widehat{BOC}\)

Ta có: tia OB nằm giữa hai tia OA và OC(cmt)

mà \(\widehat{AOB}=\widehat{BOC}\)(cmt)

nên OB là tia phân giác của \(\widehat{AOC}\)(đpcm)

15 tháng 5 2021

a) Ta có : aOb < aOc ( \(40^o< 140^o\))

⇒ Ob nằm giữa Oa và Oc 

⇒ aOb + bOc = aOc 

⇒ bOc = aOc - aOb = \(140^o-40^o=100^o\)

b) Có : Od là tia đối của Oc ⇒ Ob nằm giữa Oc và Od 

⇒ dOb + bOc = \(180^o\) ( 2 góc kề bù ) 

⇒ dOb = \(180^o\) - bOc = \(180^o-100^o=80^o\)

Lại có : bOd > bOa ( \(80^o>40^o\))

⇒ Oa nằm giữa Ob và Od 

⇒ dOa + aOb = dOb 

⇒ dOa = dOb - aOb = \(80^o-40^o=40^o\)

mà aOb = \(40^o\)(gt) 

⇒ Tia Oa là tia phân giác của bOd

Giải:

a) Vì +)Ob;Oc cùng ∈ 1 nửa mặt phẳng bờ chứa tia Oa

         +)\(a\widehat{O}b< a\widehat{O}c\) (40o<140o)

⇒Ob nằm giữa Oa và Oc

\(a\widehat{O}b+b\widehat{O}c=a\widehat{O}c\) 

    \(40^o+b\widehat{O}c=140^o\) 

              \(b\widehat{O}c=140^o-40^o\)  

              \(b\widehat{O}c=100^o\) 

b) Vì Od là tia đối của Oc

\(c\widehat{O}d=180^o\) 

\(d\widehat{O}b+b\widehat{O}c=180^o\) 

   \(d\widehat{O}b+100^o=180^o\)  

              \(d\widehat{O}b=180^o-100^o\) 

              \(d\widehat{O}b=80^o\) 

\(b\widehat{O}a+a\widehat{O}d=b\widehat{O}d\) 

    \(40^o+a\widehat{O}d=80^o\) 

              \(a\widehat{O}b=80^o-40^o\) 

               \(a\widehat{O}b=40^o\)

Vì +) \(b\widehat{O}a+a\widehat{O}d=b\widehat{O}d\) 

    +) \(b\widehat{O}a=a\widehat{O}d=40^o\) 

⇒Oa là tia p/g của \(b\widehat{O}d\) 

Chúc bạn học tốt!

22 tháng 7 2018

Đề sai nhiều quá

A A' B B' O C D 45

A) Ta có \(OC\perp OA=90^O\)

Mà OB' là tia phân giác góc A'OC

=> \(\widehat{A'OB'}=\frac{90}{2}=45^O\) \(=\widehat{AOB}\)

Mà OA là OA' nằm trên cùng 1 đường thẳng 

=> AOB và  A'OB' là 2 góc đối đỉnh  

b) \(\widehat{DOA}\Leftrightarrow\widehat{AOD}=90^O\)