K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 10 2018

ta có : a^2 + b^2 + 1 = ab + a + b

=> 2a^2 + 2b^2 + 2 = 2ab + 2a + 2b

=> 2a^2 + 2b^2 + 2 - 2ab - 2a - 2b = 0

(a^2-2a+1) + (b^2-2b+1) + (a^2 - 2ab + b^2) = 0

(a-1)^2 + (b-1)^2 + (a-b)^2 = 0

mà (a-1)^2;(b-1)^2;(a-b)^2 lớn hơn hoặc = 0

=> (a-1)^2 = 0 => a-1=0 => a = 1

(b-1)^2 = 0 => b - 1 = 0 => b = 1

=> a =b=1

1 tháng 10 2018

\(a^2+b^2+1=ab+a+b\)

\(\Leftrightarrow a^2+b^2+1-ab-a-b=0\)

\(\Leftrightarrow2a^2+2b^2+2-2ab-2a-2b=0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-a+1\right)+\left(b^2-b+1\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2=0\)

\(\Rightarrow a=b=1\)

2 tháng 1 2018

post ít một thôi

11 tháng 2 2022

3)undefined

NV
13 tháng 2 2022

1.

Theo nguyên lý Dirichlet, trong 3 số a;b;c luôn có 2 số cùng phía so với \(\dfrac{2}{3}\), không mất tính tổng quát, giả sử đó là b và c

\(\Rightarrow\left(b-\dfrac{2}{3}\right)\left(c-\dfrac{2}{3}\right)\ge0\)

Mặt khác \(0\le a\le1\Rightarrow1-a\ge0\)

\(\Rightarrow\left(b-\dfrac{2}{3}\right)\left(c-\dfrac{2}{3}\right)\left(1-a\right)\ge0\)

\(\Leftrightarrow-abc\ge\dfrac{4a}{9}+\dfrac{2b}{3}+\dfrac{2c}{3}-\dfrac{2ab}{3}-\dfrac{2ac}{3}-bc-\dfrac{4}{9}\)

\(\Leftrightarrow-abc\ge-\dfrac{2a}{9}+\dfrac{2}{3}\left(a+b+c\right)-\dfrac{2ab}{3}-\dfrac{2ac}{3}-bc-\dfrac{4}{9}=-\dfrac{2a}{9}-\dfrac{2ab}{3}-\dfrac{2ac}{3}-bc+\dfrac{8}{9}\)

\(\Leftrightarrow-2abc\ge-\dfrac{4a}{9}-\dfrac{4ab}{3}-\dfrac{4ac}{3}-2bc+\dfrac{16}{9}\)

\(\Leftrightarrow ab+bc+ca-2abc\ge-\dfrac{4a}{9}-\dfrac{ab}{3}-\dfrac{ac}{3}-bc+\dfrac{16}{9}\)

\(\Leftrightarrow ab+bc+ca-2abc\ge-\dfrac{4a}{9}-\dfrac{a}{3}\left(b+c\right)-bc+\dfrac{16}{9}\ge-\dfrac{4a}{9}-\dfrac{a}{3}\left(2-a\right)-\dfrac{\left(b+c\right)^2}{4}+\dfrac{16}{9}\)

\(\Rightarrow ab+bc+ca-2abc\ge-\dfrac{4a}{9}+\dfrac{a^2}{3}-\dfrac{2a}{3}-\dfrac{\left(2-a\right)^2}{4}+\dfrac{16}{9}\)

\(\Rightarrow ab+bc+ca-2abc\ge\dfrac{a^2}{12}-\dfrac{a}{9}+\dfrac{7}{9}=\dfrac{1}{12}\left(a-\dfrac{2}{3}\right)^2+\dfrac{20}{27}\ge\dfrac{20}{27}\)

\(\Rightarrow ab+bc+ca\ge2abc+\dfrac{20}{27}\)

Dấu "=" xảy ra khi \(a=b=c=\dfrac{2}{3}\)

2 tháng 9 2017

Lui mới lớp 6

8 tháng 10 2017

\(a^2+b^2+1=ab+a+b\)

\(\Rightarrow2\left(a^2+b^2+1\right)=2(ab+a+b)\)

\(\Rightarrow2a^2+2b^2+2=2ab+2a+2b\)

\(\Rightarrow a^2-2ab+b^2+a^2-2a+1+b^2-2b+1=0\)\(\Rightarrow\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2=0\)

\(\Rightarrow a-b=0;a-1=0;b-1=0\)

Hay \(a=b=1\left(đpcm\right)\)