cho a^2 + b^2 + 1 = ab + a + b
Cmr : a= b = 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
Theo nguyên lý Dirichlet, trong 3 số a;b;c luôn có 2 số cùng phía so với \(\dfrac{2}{3}\), không mất tính tổng quát, giả sử đó là b và c
\(\Rightarrow\left(b-\dfrac{2}{3}\right)\left(c-\dfrac{2}{3}\right)\ge0\)
Mặt khác \(0\le a\le1\Rightarrow1-a\ge0\)
\(\Rightarrow\left(b-\dfrac{2}{3}\right)\left(c-\dfrac{2}{3}\right)\left(1-a\right)\ge0\)
\(\Leftrightarrow-abc\ge\dfrac{4a}{9}+\dfrac{2b}{3}+\dfrac{2c}{3}-\dfrac{2ab}{3}-\dfrac{2ac}{3}-bc-\dfrac{4}{9}\)
\(\Leftrightarrow-abc\ge-\dfrac{2a}{9}+\dfrac{2}{3}\left(a+b+c\right)-\dfrac{2ab}{3}-\dfrac{2ac}{3}-bc-\dfrac{4}{9}=-\dfrac{2a}{9}-\dfrac{2ab}{3}-\dfrac{2ac}{3}-bc+\dfrac{8}{9}\)
\(\Leftrightarrow-2abc\ge-\dfrac{4a}{9}-\dfrac{4ab}{3}-\dfrac{4ac}{3}-2bc+\dfrac{16}{9}\)
\(\Leftrightarrow ab+bc+ca-2abc\ge-\dfrac{4a}{9}-\dfrac{ab}{3}-\dfrac{ac}{3}-bc+\dfrac{16}{9}\)
\(\Leftrightarrow ab+bc+ca-2abc\ge-\dfrac{4a}{9}-\dfrac{a}{3}\left(b+c\right)-bc+\dfrac{16}{9}\ge-\dfrac{4a}{9}-\dfrac{a}{3}\left(2-a\right)-\dfrac{\left(b+c\right)^2}{4}+\dfrac{16}{9}\)
\(\Rightarrow ab+bc+ca-2abc\ge-\dfrac{4a}{9}+\dfrac{a^2}{3}-\dfrac{2a}{3}-\dfrac{\left(2-a\right)^2}{4}+\dfrac{16}{9}\)
\(\Rightarrow ab+bc+ca-2abc\ge\dfrac{a^2}{12}-\dfrac{a}{9}+\dfrac{7}{9}=\dfrac{1}{12}\left(a-\dfrac{2}{3}\right)^2+\dfrac{20}{27}\ge\dfrac{20}{27}\)
\(\Rightarrow ab+bc+ca\ge2abc+\dfrac{20}{27}\)
Dấu "=" xảy ra khi \(a=b=c=\dfrac{2}{3}\)
\(a^2+b^2+1=ab+a+b\)
\(\Rightarrow2\left(a^2+b^2+1\right)=2(ab+a+b)\)
\(\Rightarrow2a^2+2b^2+2=2ab+2a+2b\)
\(\Rightarrow a^2-2ab+b^2+a^2-2a+1+b^2-2b+1=0\)\(\Rightarrow\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2=0\)
\(\Rightarrow a-b=0;a-1=0;b-1=0\)
Hay \(a=b=1\left(đpcm\right)\)
ta có : a^2 + b^2 + 1 = ab + a + b
=> 2a^2 + 2b^2 + 2 = 2ab + 2a + 2b
=> 2a^2 + 2b^2 + 2 - 2ab - 2a - 2b = 0
(a^2-2a+1) + (b^2-2b+1) + (a^2 - 2ab + b^2) = 0
(a-1)^2 + (b-1)^2 + (a-b)^2 = 0
mà (a-1)^2;(b-1)^2;(a-b)^2 lớn hơn hoặc = 0
=> (a-1)^2 = 0 => a-1=0 => a = 1
(b-1)^2 = 0 => b - 1 = 0 => b = 1
=> a =b=1
\(a^2+b^2+1=ab+a+b\)
\(\Leftrightarrow a^2+b^2+1-ab-a-b=0\)
\(\Leftrightarrow2a^2+2b^2+2-2ab-2a-2b=0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-a+1\right)+\left(b^2-b+1\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2=0\)
\(\Rightarrow a=b=1\)