K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2015

nếu số mũ là 2 thì lũy thừa đó là số chính phương 

    số mũ chỉ là 2 thôi đó

23 tháng 10

A  =5 + 52 + 53 + ... + 5100

A ⋮ 1; 5 ; A (A > 5)

Vậy A là hợp số

b; A = 5 + 52 + 53 + ... + 5100

   A =  5 + 52(1 + 5  + 52 + ... + 598)

 ⇒  A \(⋮\) 5; A không chia hết cho 52. Vậy A không phải là số chính phương vì số chính phương chia hết cho một số nguyên tố thì phải chia hết cho bình phương số nguyên tố đó. 

 

26 tháng 7 2016

mau lên các bạn!

a. Ta có: A = 5 + 5^2  + 5^3 +....+ 5^100       

⇒A = 5 + 5^2 + 5^3 + 5^4 + ... + 5^99 + 5^100        ⇒A = 5^1 + 5 + 5^3 . 1 + 5 + ... + 5 ^9 . 1 + 5        

⇒A = 5.6 + 5 3 .6 + ... + 5^99 .6               

A = 6. 5 + 5 3 + ... + 5^99  chia hết cho 6. Vì A chia hết cho 6 nên A là hợp số

b,A không hải số chính phương

23 tháng 10

A  =5 + 52 + 53 + ... + 5100

A ⋮ 1; 5 ; A (A > 5)

Vậy A là hợp số

b; A = 5 + 52 + 53 + ... + 5100

   A =  5 + 52(1 + 5  + 52 + ... + 598)

 ⇒  A \(⋮\) 5; A không chia hết cho 52. Vậy A không phải là số chính phương vì số chính phương chia hết cho một số nguyên tố thì phải chia hết cho bình phương số nguyên tố đó. 

 

23 tháng 10

A  =5 + 52 + 53 + ... + 5100

A ⋮ 1; 5 ; A (A > 5)

Vậy A là hợp số

b; A = 5 + 52 + 53 + ... + 5100

   A =  5 + 52(1 + 5  + 52 + ... + 5198)

 ⇒  A \(⋮\) 5; A không chia hết cho 52. Vậy A không phải là số chính phương vì số chính phương chia hết cho một số nguyên tố thì phải chia hết cho bình phương số nguyên tố đó. 

 

28 tháng 3 2017

a, Hai số đó là 0 và 1.

b, Hợp số có nhiều hơn.

16 tháng 4 2016

Vì p là tích của n số nguyên tố đầu tiên nên p chia hết cho 2 và không chia hết cho 4

Ta chứng minh p + 1 là số chính phương

Giả sử p + 1 là số chính phương. Đặt p + 1 = m2

Vì p chẵn nên p + 1 lẻ => m lẻ => m2 lẻ

Đặt m = 2k + 1. Ta có : m2 = 4k2 + 4k + 1 => p + 1 = 4k2 + 4k + 1 => p = 4k2 + 4k = 4k(k+1) chia hết cho 4

Ta chứng minh p – 1 là số chính phương

Ta có: p = 2.3.5…. chia hết cho 3 => p -1 = 3k + 2

Vì không có số chính phương nào có dạng 3k + 2 nên p – 1 không phải số chính phương

Vậy nếu p là tích 2016 số nguyên tố đầu tiên thì p + 1 và p – 1 không phải số chính phương

25 tháng 4 2018

nhận xét:số chính phương khi chia cho 3 hay 4 đều có số dư là 0 hoặc 1

Ta có:\(P=2\cdot3\cdot5\cdot....\)

Do p chia hết cho 3 nên p-1 chia 3 dư 2.theo nhận xét suy ra p-1 không phải là số chính phương(1)

dễ thấy p không chia hết cho 4 và p chia hết cho 2 nên p chia 4 dư 2 suy ra p+1 chia 4 dư 3.theo nhận xét suy ra p+1 không là số chính phương

TỪ(1),(2) suy ra điều cần chứng minh

22 tháng 7 2015

a. Ta có: A = 5 + 52 + 5+....+ 5100

      \(\Rightarrow A=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{99}+5^{100}\right)\)

       \(\Rightarrow A=5\left(1+5\right)+5^3.\left(1+5\right)+...+5^{99}.\left(1+5\right)\)

       \(\Rightarrow A=5.6+5^3.6+...+5^{99}.6\)

              \(A=6.\left(5+5^3+...+5^{99}\right)\) chia hết cho 6.

Vì A chia hết cho 6 nên A là hợp số.

17 tháng 12 2016

còn câu b