Tim x y z
\(2^x+2^y+2^z=552\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b/ \(2^x+2^y+2^z=552\)
\(\Leftrightarrow2^x\left(1+2^{y-x}+2^{z-x}\right)=2^3.69\)
\(\Leftrightarrow\hept{\begin{cases}x=3\\1+2^{y-x}+2^{z-x}=69\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=3\\2^y+2^z=544\left(1\right)\end{cases}}\)
\(\left(1\right)\Leftrightarrow2^y\left(1+2^{z-y}\right)=2^5.17\)
\(\Leftrightarrow\hept{\begin{cases}y=5\\1+2^{z-y}=17\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=5\\z=9\end{cases}}\)
Vậy \(x=3;y=5;z=9\)
a/ Dễ thấy: \(z>x,y\)
Xét \(x>y\)
\(\Rightarrow2^x\left(1+2^{y-x}-2^{z-x}\right)=0\)
Loại vì \(2^x\left(1+2^{y-x}-2^{z-x}\right)< 0\)
Tương tự cho trường hợp \(x< y\)
Xét \(x=y\)
\(2^x+2^y=2^z\)
\(\Leftrightarrow2^{x+1}=2^z\)
\(\Leftrightarrow x+1=z\)
Vậy nghiệm là: \(x=y=z-1\)
Vậy x(x + y + z) + y(x + y+ z) + z(x + y + z) = 2 + 25 - 2 = 25
(x + y + z)(x + y + z) = 25
(x + y + z) = 52 = (-5) 2
Bạn tự liệt kê x;y;z ra nha!
Ta có : x (x + y + z) = 2 (1)
y (x + y + z) = 25 (2)
z (x + y + z) = -2 (3)
=> x (x + y + z) + y (x + y + z) + z (x + y + z) = 2 + 25 + (-2)
=> (x + y + z) (x + y + z) = 25
=> (x + y + z)2 = 52 = (-5)2
* Nếu (x + y + z)2 = 52 => x + y + z = 5 (4)
Từ (1) và (4) => x . 5 = 2 => x = 2/5 (thỏa mãn x > 0)
Từ (2) và (4) => y . 5 = 25 => y = 5
Từ (30 và (4) => z . 5 = -2 => z = -2/5
* Nếu (x + y + z)2 = (-5)2 => x + y + z = -5 (5)
Từ (1) và (5) => x . (-5) = 2 => x = -2/5 (ko thỏa mãn x > 0)
Vậy x = 2/5 ; y = 5 ; z = -2/5 thì thỏa mãn đề bài
Áp dụng bất đẳng thức cho ba số \(x,y,z\in Z^+\), ta được
\(x^2+y^2\ge2xy\) \(\Rightarrow\) \(\frac{x+y}{x^2+y^2}\le\frac{x+y}{2xy}\) \(\left(1\right)\)
\(y^2+z^2\ge2yz\) \(\Rightarrow\) \(\frac{y+z}{y^2+z^2}\le\frac{y+z}{2yz}\) \(\left(2\right)\)
\(z^2+x^2\ge2xz\) \(\Rightarrow\) \(\frac{z+x}{z^2+x^2}\le\frac{z+x}{2xz}\) \(\left(3\right)\)
Cộng từng vế của \(\left(1\right);\) \(\left(2\right)\) và \(\left(3\right)\) ta được \(\frac{x+y}{x^2+y^2}+\frac{y+z}{y^2+z^2}+\frac{z+x}{z^2+x^2}\le\frac{x+y}{2xy}+\frac{y+z}{2yz}+\frac{z+x}{2xz}=\frac{1}{2y}+\frac{1}{2x}+\frac{1}{2z}+\frac{1}{2y}+\frac{1}{2x}+\frac{1}{2z}\)
\(\Leftrightarrow\) \(P\le\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2015\)
Dấu \("="\) xảy ra khi và chỉ khi \(x=y=z=\frac{3}{2015}\)
Vậy, \(P_{max}=2015\) \(\Leftrightarrow\) \(x=y=z=\frac{3}{2015}\)
Áp dụng BĐT Cauchy - Schwarz dạng phân thức, ta có :
\(P=\)\(\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\ge\frac{\left(x+y+z\right)^2}{y+z+x+z+x+y}=\frac{\left(x+y+z\right)^2}{2x+2y+2z}=\frac{\left(x+y+z\right)^2}{2.\left(x+y+z\right)}=\frac{2^2}{2.2}=1\)
Dấu " = ' xảy ra \(\Leftrightarrow\)\(x=y=z\)
Vậy : \(MinP=1\)\(\Leftrightarrow x=y=z\)
\(a)\dfrac{y+z+1}{x}=\dfrac{z+x+2}{y}=\dfrac{x+y-3}{z}=\dfrac{1}{x+y+z}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{y+z+1}{x}=\dfrac{x+z+2}{y}=\dfrac{x+y-3}{z}=\dfrac{y+z+x+x+z+2+x+y-3}{x+y+z}\)
\(=\dfrac{\left(x+y+z\right)+\left(x+y+z\right)+\left(1+2-3\right)}{x+y+z}=\dfrac{2\left(x+y+z\right)}{x+y+z}=2\)
Lại có: \(\dfrac{y+z+1}{x}=\dfrac{x+z+2}{y}=\dfrac{x+y-3}{z}=\dfrac{1}{x+y+z}\)
\(\Rightarrow2=\dfrac{1}{x+y+z}\Rightarrow2\left(x+y+z\right)=1\Rightarrow x+y+z=\dfrac{1}{2}\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{y+z+1}{x}=2\\\dfrac{x+z+2}{y}=2\\\dfrac{x+y-3}{z}=2\\x+y+z=\dfrac{1}{2}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}y+z+1=2x\\x+z+2=2y\\x+y-3=2z\\x+y+z=\dfrac{1}{2}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}y+z+x+1=3x\\x+y+z+2=3y\\x+y+z-3=3z\\x+y+z=\dfrac{1}{2}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{2}+1=3x\\\dfrac{1}{2}+2=3y\\\dfrac{1}{2}-3=3z\\x+y+z=\dfrac{1}{2}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1+\dfrac{1}{2}}{3}\\y=\dfrac{\dfrac{1}{2}+2}{3}\\z=\dfrac{\dfrac{1}{2}-3}{3}\\x+y+z=\dfrac{1}{2}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{5}{6}\\z=\dfrac{-5}{6}\end{matrix}\right.\)
Chúc bạn học tốt!
Áp dụng tc dãy tỉ số bằng nhau ta có :
x+y+z = x/y+z+1 = y/z+x+1 = x+y-2 = x+y+z/2x+2y+2z = 1/2
=> x+y+z = 1/2 ; x=1/2.(y+z+1) ; y = 1/2.(x+z+1) ; z = 1/2.(x+y-2)
=> x=y=1/2 và x=-1/2
Tk mk nha