Chứng minh rằng
\(1+4+4^2+4^3+...+4^{2000}⋮4^{21}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=1+4+4^2+4^3+...+4^{1999}+4^{2000}\)
\(=\left(1+4+4^2\right)+\left(4^3+4^4+4^5\right)+...+\left(4^{1998}+4^{1999}+4^{2000}\right)\)
\(=\left(1+4+4^2\right)+4^3\left(1+4+4^2\right)+...+4^{1998}\left(1+4+4^2\right)\)
\(=21\left(1+4^3+...+4^{1998}\right)⋮21\)
A=1+4+4\(^2\)+4\(^3\)+...+4\(^{1999}\)+4\(^{2000}\)
=(1+4+4\(^2\))+(4\(^3\)+4\(^4\)+4\(^5\))+...+(4\(^{1998}\)+4\(^{1999}\)+4\(^{2000}\))
=(1+4+4\(^2\))+4\(^3\)(1+4+4\(^2\))+...+4\(^{1998}\)(1+4+4\(^2\))
=21(1+4\(^3\)+...+4\(^{1998}\))⋮21
A = 1 + 4 + 42 + 43 + ... + 42000
A = (1 + 4 + 42) + (43 + 44 + 45) + ... + (41998 + 41999 + 42000)
A = 21 + 43.(1 + 4 + 42) + ... + 41998.(1 + 4 + 42)
A = 21 + 43.21 + ... + 41998.21
A = 21.(1 + 43 + ... + 41998)
Vì 21 chia hết cho 21 => 21.(1 + 43 + ... + 41998) chia hết cho 21 hay A chia hết cho 21 (đpcm)
nhóm 3 số vào 1 nhóm tính số số hạng rồi đặt thừa sô chung là 21 thì chia hết cho 21
a)
A=1+4+42+...+459A=1+4+42+...+459
A=(1+4+42)+(43+44+45)+...+(457+458+459)A=(1+4+42)+(43+44+45)+...+(457+458+459)
A=(1+4+42)+43(1+4+42)+...+447(1+4+42)A=(1+4+42)+43(1+4+42)+...+447(1+4+42)
A=21+43.21+...+447.21A=21+43.21+...+447.21
A=21(1+43+...+447)A=21(1+43+...+447)
⇒A⋮21
các số như 43,447,459,458........ là 4 mũ và các số đằng sau là số mũ
câu b cũng làm như vậy nhưng dổi các số và kết quả
A=(1+4+4^2)+(4^3+4^4+4^5)+...+(4^57+4^58+4^59)
A=1.21+4^3(1+4+4^2)+...+4^57(1+4+4^2)
A=1.21+4^3.21+...+4^57.21
A=(1+4^3+...+4^57).21
Vậy A chia hết cho 21
C= 4(1+4+4^2+4^3+4^4+...+4^59)
C= 4+4^2+4^3+4^4+...+4^59
C=(4.1+4.4+4.4^2) +(4^3.1+4^3.4+4^3.4^2) +... +(4^57.1+4^57.4+4^57.4^2)
C= 4.(1+4+16) +4^3(1+4+16) +... +4^57.(1+4+16)
C=4.21 + 4^3.21+4^57.21
Suy ra C chia hết cho 21
Ta có : B=1+4+4^2+4^3+...+4^2012
=>4B=4(1+4+4^2+4^3+...+4^2012)=4+4^2+4^3+4^4+...+4^2013
=>4B-B=(4+4^2+4^3+4^4+...+4^2013)-(1+4+4^2+4^3+...+4^2012)
=>3B=4^2013-1
Ta có 4^2013=(4^3)^671
Mà 4^3=64 chia cho 21 dư 1
=>(4^3)^671 chia cho 21 dư 1
=>(4^3)^671 -1 chia hết cho 21
Hay 4^2013-1 chia hết cho 21
=>3B chia hết cho 21
Mặt khác lại có:4^2013-1 > 63
=> 3B>3 nhân với 21
B>21(1)
Mà 3B chia hết cho 21(2)
Từ (1) và (2)=>B chia hết cho 21
Vậy ........................................
k cho mình nha
Ta thây từ \(4^{21}\rightarrow4^{2000}⋮4^{21}\)
Ta chưng minh
\(A=1+4+4^2+...+4^{20}\)chia hêt \(4^{21}\)
\(\Rightarrow4A=4+4^2+4^3+...+4^{21}\)
\(\Rightarrow A=\frac{4^{21}-1}{3}< 4^{21}\)
Nên đề xai
Nêu đề bảo chưng minh chia hêt cho 21 thì ta co
\(1+4+4^2+...+4^{2000}=\left(1+4+4^2\right)+4^3\left(1+4+4^2\right)+...+4^{1998}\left(1+4+4^2\right)\)
\(=21\left(1+4^3+...+4^{1998}\right)⋮21\)