K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
NT
2
NA
0
NA
0
A
0
A
0
VP
0
11 tháng 10 2021
\(a,\sqrt{22-12\sqrt{2}}+\sqrt{6+4\sqrt{2}}=\sqrt{\left(3\sqrt{2}-2\right)^2}+\sqrt{\left(2+\sqrt{2}\right)^2}\\ =3\sqrt{2}-2+2+\sqrt{2}=4\sqrt{2}\\ b,\dfrac{1}{\sqrt{n}+\sqrt{n+1}}=\dfrac{\sqrt{n}-\sqrt{n+1}}{n-n-1}\\ =\dfrac{\sqrt{n}-\sqrt{n+1}}{-1}=\sqrt{n+1}-\sqrt{n}\)
11 tháng 10 2021
a) \(\sqrt{22-12\sqrt{2}}+\sqrt{6+4\sqrt{2}}\)
\(=\sqrt{\left(3\sqrt{2}-2\right)^2}+\sqrt{\left(2+\sqrt{2}\right)^2}\)
\(=3\sqrt{2}-2+2+\sqrt{2}=4\sqrt{2}\)
b) \(\dfrac{1}{\sqrt{n}+\sqrt{n+1}}=\dfrac{\sqrt{n+1}-\sqrt{n}}{n+1-n}=\sqrt{n+1}-\sqrt{n}\)
Ta thây từ \(4^{21}\rightarrow4^{2000}⋮4^{21}\)
Ta chưng minh
\(A=1+4+4^2+...+4^{20}\)chia hêt \(4^{21}\)
\(\Rightarrow4A=4+4^2+4^3+...+4^{21}\)
\(\Rightarrow A=\frac{4^{21}-1}{3}< 4^{21}\)
Nên đề xai
Nêu đề bảo chưng minh chia hêt cho 21 thì ta co
\(1+4+4^2+...+4^{2000}=\left(1+4+4^2\right)+4^3\left(1+4+4^2\right)+...+4^{1998}\left(1+4+4^2\right)\)
\(=21\left(1+4^3+...+4^{1998}\right)⋮21\)