\(P=\sqrt{2\sqrt{3\sqrt{4\sqrt{...\sqrt{2000}}}}}< 3\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 1 2017

Chịu không giao luu nổi

1 tháng 1 2017

Cứ rút từ từ là ra

10 tháng 11 2017

Có : 2 > \(\sqrt{3}\) ; 3 > \(\sqrt{4}\) ; ..... ; 1999 > \(\sqrt{2000}\)

=> VT = \(\sqrt{2\sqrt{3\sqrt{4......\sqrt{1999\sqrt{2000}}}}}\)<   \(\sqrt{2\sqrt{3\sqrt{4......\sqrt{1999.1999}}}}\)

\(\sqrt{2\sqrt{3\sqrt{4.....\sqrt{1999}}}}\) < ........ < \(\sqrt{2\sqrt{3}}\) <  \(\sqrt{2.2}\) = 2

=> ĐPCM

10 tháng 11 2017

Ta có: \(n=\sqrt{n^2}=\sqrt{1+n^2-1}=\sqrt{1+n-1.n+1}\)

Áp dụng công thức trên với \(n=4,5,6\)ta có:

\(4=\sqrt{1+3.5}=\sqrt{1+3\sqrt{1+4\sqrt{1+5.7}}}=\sqrt{1+3\sqrt{1+\sqrt{4\sqrt{1+...n-1\sqrt{n+1^2}}}}}\)

\(>\sqrt{3\sqrt{4\sqrt{...2000}}}\)

Do đó: \(\sqrt{2+\sqrt{3\sqrt{4\sqrt{...2000}}}}< \sqrt{2+2}=2\)

1. Tính giá trị biểu thức: \(A=\sqrt{a^2+4ab^2+4b}-\sqrt{4a^2-12ab^2+9b^4}\) với \(a=\sqrt{2}\) ; \(b=1\) 2. Đặt \(M=\sqrt{57+40\sqrt{2}}\) ; \(N=\sqrt{57-40\sqrt{2}}\). Tính giá trị của các biểu thức sau: a) M-N b) \(M^3-N^3\) 3. Chứng minh: \(\left(\frac{x\sqrt{x}+3\sqrt{3}}{x-\sqrt{3x}+3}-2\sqrt{x}\right)\left(\frac{\sqrt{x}+\sqrt{3}}{3-x}\right)=1\) (với \(x\ge0\) và \(x\ne3\)) 4. Chứng minh:...
Đọc tiếp

1. Tính giá trị biểu thức: \(A=\sqrt{a^2+4ab^2+4b}-\sqrt{4a^2-12ab^2+9b^4}\) với \(a=\sqrt{2}\) ; \(b=1\)

2. Đặt \(M=\sqrt{57+40\sqrt{2}}\) ; \(N=\sqrt{57-40\sqrt{2}}\). Tính giá trị của các biểu thức sau:

a) M-N

b) \(M^3-N^3\)

3. Chứng minh: \(\left(\frac{x\sqrt{x}+3\sqrt{3}}{x-\sqrt{3x}+3}-2\sqrt{x}\right)\left(\frac{\sqrt{x}+\sqrt{3}}{3-x}\right)=1\) (với \(x\ge0\)\(x\ne3\))

4. Chứng minh: \(\frac{\left(\sqrt{a}-\sqrt{b}\right)^2+4\sqrt{ab}}{\sqrt{a}+\sqrt{b}}.\frac{a\sqrt{b}-b\sqrt{a}}{\sqrt{ab}}=a-b\) (a > 0 ; b > 0)

5. Chứng minh: \(\sqrt{9+4\sqrt{2}}=2\sqrt{2}+1\) ; \(\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}=5+3\sqrt{2}\) ; \(3-2\sqrt{2}=\left(1-\sqrt{2}\right)^2\)

6. Chứng minh: \(\left(\frac{1}{2\sqrt{2}-\sqrt{7}}-\left(3\sqrt{2}+\sqrt{17}\right)\right)^2=\left(\frac{1}{2\sqrt{2}-\sqrt{17}}-\left(2\sqrt{2}-\sqrt{17}\right)\right)^2\)

7. Chứng minh đẳng thức: \(\left(\frac{3\sqrt{2}-\sqrt{6}}{\sqrt{27}-3}-\frac{\sqrt{150}}{3}\right).\frac{1}{\sqrt{6}}=-\frac{4}{3}\)

8.Chứng minh: \(\frac{2002}{\sqrt{2003}}+\frac{2003}{\sqrt{2002}}>\sqrt{2002}+\sqrt{2003}\)

9. Chứng minh rằng: \(\sqrt{2000}-2\sqrt{2001}+\sqrt{2002}< 0\)

10. \(\frac{1}{2}+\frac{1}{3\sqrt{2}}+...+\frac{1}{\left(n+1\right)\sqrt{n}}< 2\) ; \(\frac{7}{5}< \frac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2-\sqrt{3}}}< \frac{29}{30}\)

0
5 tháng 8 2018

c/m \(\sqrt{a+n}+\sqrt{a-n}< 2\sqrt{a}\)

  \(\left(\sqrt{a+n}+\sqrt{a-n}\right)^2< \left(2\sqrt{a}\right)^2\)

\(\Leftrightarrow a+n+a-n+2\sqrt{a^2-n^2}< 4a\)

\(2a+2\sqrt{a^2-n^2}< 2a+2\sqrt{a^2}\)

\(2a+2\sqrt{a^2-n^2}< 4a\)

=>\(\sqrt{2001-1}+\sqrt{2001+1}< 2\sqrt{2001}\)

nên\(\sqrt{2000}-2\sqrt{2001}+\sqrt{2002}< 0\left(đpcm\right)\)