K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 9 2018

Easy! Tham khảo cách giải của mình nhé!

Ta có:

\(\frac{x}{x+y}=1+\frac{x}{y}\) 

\(\frac{y}{y+z}=1+\frac{y}{z}\)

\(\frac{z}{x+z}=1+\frac{z}{x}\)

Cộng theo từng vế của đẳng thức trên ta được:

\(\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{x+z}=1+\frac{x}{y}+1+\frac{y}{z}+1+\frac{z}{x}>1^{\left(đpcm\right)}\)

21 tháng 9 2018

Chết làm nhầm!  =((((

26 tháng 10 2015

I am sorry

26 tháng 10 2015

Hài ... Cái đề sai rồi bạn ~~ Làm mình tốn công giải nãy giờ

Nếu x=y=z=672

=> cái đề sai

7 tháng 10 2016

a, \(\frac{x}{19}=\frac{y}{5}=\frac{z}{95}\); 5x-y-z=-10

biến đổi: 
\(\frac{x}{19}=\frac{5x}{95}\)

=> \(\frac{x}{19}=\frac{y}{5}=\frac{z}{95}\)

(=) \(\frac{5x}{95}=\frac{y}{5}=\frac{z}{95}\)

= \(\frac{5x-y-z}{95-5-95}\)

= \(\frac{-10}{-5}=2\)

* \(\frac{x}{19}=2\)=> \(x=19.2=38\)

* \(\frac{y}{5}=2\)=> \(y=2.5=10\)

* \(\frac{z}{95}=2\)=> \(z=95.2=190\)

7 tháng 10 2016

nè Khoa ơi câu b có đề ko zợ?