Chứng minh các đẳng thức:
1218.1816
7520=4510.530
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\left(a-b\right)^2\ge0\)
\(\Leftrightarrow a^2-2ab+b^2\)\(\ge0\)
\(\Leftrightarrow a^2+b^2\ge2ab\)
Dấu " = " xảy ra ⇔ a=b
a) \(a.\left(b+c\right)-b.\left(a-c\right)=a.b+a.c-b.a+b.c=a.c+b.c=c.\left(a+b\right)\)
b) \(a.\left(b-c\right)-a.\left(b+d\right)=a.b-a.c-a.b-a.d=-a.c-a.d=-a.\left(c+d\right)\)
ĐPCM
a)Xét VT(vế trái)=a.(b+c)-b.(a-c) b)Xét VT=a(b-c)-a(b+d)
a;BIến đổi vế phải ta có
(a + b)^3 - 3ab(a+b) = a^3 + 3a^2.b + 3ab^2 + b^3 - 3a^2.b - 3ab^2 = a^3 + b^3
VẬy VT = VP đẳng thức dược CM
b; tương tự
cuyển đổi vế phải
a, (a+b)3-3a(a+b)= a3+3a2b+3ab2+b3-3a2b-3ab2=a3+b3
b, (a-b)3+3ab(a-b)=a3-3a2b+3ab2-b3+3a2b-3ab2=a3-b3
Vế trái = (a + b)(a - b)
= a.a + b.a - a.b - b.b
= a2 - b2 = vế phải
Ta có:-a(c-d)-d(a+c)
=-ac+ad-da-dc
=-ac-dc
=-c(a+d) (đpcm)
chép giải sbt nha đầy đủ đó mk vừa làm xong