K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 10 2018

đề sai rồi.vd:5,-1,-2

13 tháng 11 2018

khó quá nha bn

mk mới chỉ hok lớp 7 thôi

xin lỡi nha

mk tin sẽ có nguoi tra lới cau hoi của bn

hok tot >_<

13 tháng 6 2018

Ta có: \(\Delta=b^2-4ac\)

Lại có: \(\left(a+c\right)^2< ab+bc-2ac\)

\(\Rightarrow-2ac>b\left(a+c\right)+\left(a+c\right)^2\)

\(\Rightarrow\Delta=b^2-4ac>b^2+2b\left(a+c\right)+2\left(a+c\right)^2\)

\(\Rightarrow\Delta>\left(a+b+c\right)^2+\left(a+c\right)^2>0\)

Suy ra phương trình \(ax^2+bx+c\) luôn có nghiệm

Giả sử a <0

Vì abc>0 nên bc <0

Có ab+bc+ca>0

<=>a(b+c)>-bc

Vì bc<0=>-bc>0

=>a(b+c)>0

Mà a<0 nên b+c<0

=> a+b+c<0

Mà theo đề a+b+c>0

=> điều giả sử sai

=> điều pk chứng minh

16 tháng 7 2022

Giả sử ba số abc không đồng thời là các số dương thì có ít nhất một số không dương.

Không mất tính tổng quát, ta giả sử a ≤ 0 

loading... Nếu a = 0 thì abc = 0 (mâu thuẫn với giả thiết abc>0

loading... Nếu a < 0 thì từ abc > 0 \Rightarrow bc < 0.

Ta có ab + bc + ca > 0 \Leftrightarrow a(b + c) > -bc \Rightarrow a(b+c) > 0 \Rightarrow b + c < 0 \Rightarrow a + b + c < 0 (mâu thuẫn với giả thiết)

Vậy cả ba số ab và c đều dương.

24 tháng 12 2021

Ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)

\(\Leftrightarrow\frac{ab+bc+ca}{abc}=\frac{1}{a+b+c}\)

\(\Leftrightarrow\left(ab+bc+ca\right)\left(a+b+c\right)=abc\)

\(\Leftrightarrow a^2b+ab^2+c^2a+ca^2+b^2c+bc^2+2abc=0\)

\(\Leftrightarrow\left(a^2+2ab+b^2\right)c+ab\left(a+b\right)+c^2\left(a+b\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(ab+bc+ca+c^2\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

=> Hoặc a+b=0 hoặc b+c=0 hoặc c+a=0

=> Hoặc a=-b hoặc b=-c hoặc c=-a

Ko mất tổng quát, g/s a=-b

a) Ta có: vì a=-b thay vào ta được:

\(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=-\frac{1}{b^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{1}{c^3}\)

\(\frac{1}{a^3+b^3+c^3}=\frac{1}{-b^3+b^3+c^3}=\frac{1}{c^3}\)

=> đpcm

b) Ta có: \(a+b+c=1\Leftrightarrow-b+b+c=1\Rightarrow c=1\)

=> \(P=-\frac{1}{b^{2021}}+\frac{1}{b^{2021}}+\frac{1}{c^{2021}}=\frac{1}{1^{2021}}=1\)