K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 9 2018

\(=\sqrt{\dfrac{1}{9}\cdot\dfrac{9}{100}}\cdot64\\ =\sqrt{\dfrac{1}{100}}\cdot64\\ =\sqrt{\left(\dfrac{1}{10}\right)^2}\cdot64\\ =\dfrac{1}{10}\cdot64\\ =\dfrac{32}{5}\)

10 tháng 6 2021

`\sqrt{1/9}.\sqrt{0,81}.\sqrt{0,09}`

`=\sqrt{(1/3)^2}.\sqrt{(0,9)^2}.\sqrt{(0,3)^2}`

`=1/3*0,9.0,3`

`=3/10*3/10`

`=9/100*

10 tháng 6 2021

Em tưởng nhân lại với nhau ạ :v

21 tháng 9 2017

a)\(\sqrt{1}\)+\(\sqrt{9}\)+\(\sqrt{25}\)+\(\sqrt{49}\)+\(\sqrt{81}\)

=1+3+5+7+9

=25

b)=\(\dfrac{1}{2}\)+\(\dfrac{1}{3}\)+\(\dfrac{1}{6}\)+\(\dfrac{1}{4}\)

=\(\dfrac{6}{12}\)+\(\dfrac{4}{12}\)+\(\dfrac{2}{12}\)+\(\dfrac{3}{12}\)

=\(\dfrac{15}{12}\)

c) =0,2+0.3+0,4

= 0.9

d) =9-8+7

=8

j) =1,2-1,3+1.4

= (-0,1)+1,4

=1,4

g) \(\dfrac{2}{5}\)+\(\dfrac{5}{2}\)+\(\dfrac{9}{10}\)+\(\dfrac{3}{4}\)

= (\(\dfrac{4}{10}\)+\(\dfrac{15}{10}\)+\(\dfrac{9}{10}\))+\(\dfrac{3}{4}\)

= \(\dfrac{14}{5}\)+\(\dfrac{3}{4}\)

=\(\dfrac{56}{20}\)+\(\dfrac{15}{20}\)

= \(\dfrac{71}{20}\)

Nhớ tick cho mk nha~

AH
Akai Haruma
Giáo viên
7 tháng 7 2021

Bạn cần làm gì với biểu thức này thì bạn ghi rõ ra.

AH
Akai Haruma
Giáo viên
7 tháng 7 2021

Lời giải:
ĐKXĐ: $x>0; x\neq 1$

\(P=\frac{1}{\sqrt{x}+1}+\frac{x}{\sqrt{x}(1-\sqrt{x})}=\frac{1}{\sqrt{x}+1}+\frac{\sqrt{x}}{1-\sqrt{x}}\)

\(=\frac{1-\sqrt{x}+\sqrt{x}(\sqrt{x}+1)}{(\sqrt{x}+1)(1-\sqrt{x})}=\frac{x+1}{1-x}\)

b. Khi $x=\frac{1}{\sqrt{2}}$ thì:

\(P=\frac{\frac{1}{\sqrt{2}}+1}{1-\frac{1}{\sqrt{2}}}=3+2\sqrt{2}\)

b: Ta có: \(\sqrt[3]{-0.008}-\dfrac{1}{5}\cdot\sqrt[3]{64}+5\cdot\sqrt[3]{\left(-5\right)^3}\)

\(=-\dfrac{1}{5}-\dfrac{1}{5}\cdot4+5\cdot\left(-5\right)\)

\(=-\dfrac{1}{5}-\dfrac{4}{5}-25\)

=-26

31 tháng 8 2021

đề bài là 0.08 mà bạn

 

1 tháng 10 2018

\(\sqrt{\dfrac{1}{9}}\cdot\sqrt{0.81}+\sqrt{0.09}\)

=\(\dfrac{1}{3}\cdot\dfrac{3}{10}+\dfrac{3}{10}\)

=\(\dfrac{1}{10}+\dfrac{3}{10}\)

=\(\dfrac{2}{5}\)

10 tháng 8 2021

ai giúp mìn vứi ❤

1 tháng 7 2021

a, ĐKXĐ : \(x\ge1\)

Ta có ; \(PT\Leftrightarrow\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}.\sqrt{9}\sqrt{x-1}+24.\sqrt{\dfrac{1}{64}}\sqrt{x-1}=-17\)

\(\Leftrightarrow\sqrt{x-1}\left(\dfrac{1}{2}-\dfrac{3}{2}\sqrt{9}+24\sqrt{\dfrac{1}{64}}\right)=-17\)

\(\Leftrightarrow-\sqrt{x-1}=-17\)

\(\Leftrightarrow\sqrt{x-1}=17\)

\(\Leftrightarrow x=290\left(TM\right)\)

Vậy ....

b, ĐKXĐ : \(x\ge3\)

Ta có : \(PT\Leftrightarrow x-3-7\sqrt{x-3}+12=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-3}=4\\\sqrt{x-3}=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=16\\x-3=9\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=19\\x=12\end{matrix}\right.\) ( TM )

Vậy ..

a) Ta có: \(\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}\sqrt{9x-9}+24\sqrt{\dfrac{x-1}{64}}=-17\)

\(\Leftrightarrow\dfrac{1}{2}\sqrt{x-1}-\dfrac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17\)

\(\Leftrightarrow-\sqrt{x-1}=-17\)

\(\Leftrightarrow x-1=17^2=289\)

hay x=290

Vậy: S={290}

b) Ta có: \(x-7\sqrt{x-3}+9=0\)

\(\Leftrightarrow x-7\sqrt{x-3}=-9\)

\(\Leftrightarrow x-3-2\cdot\sqrt{x-3}\cdot\dfrac{7}{2}+\dfrac{49}{4}=\dfrac{1}{4}\)

\(\Leftrightarrow\left(\sqrt{x-3}-\dfrac{7}{2}\right)^2=\dfrac{1}{4}\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-3}=4\\\sqrt{x-3}=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-3=16\\x-3=9\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=19\\x=12\end{matrix}\right.\)

Vậy: S={19;12}

22 tháng 10 2021

\(A=\left(8+2\cdot3-7\cdot\dfrac{13}{10}+3\cdot\dfrac{5}{4}\right):\left(\dfrac{5\sqrt{6}}{3}\right)^2\\ A=\left(14-\dfrac{91}{10}+\dfrac{15}{4}\right):\dfrac{50}{3}\\ A=\dfrac{173}{20}\cdot\dfrac{3}{50}=\dfrac{519}{1000}\)

a) Ta có: \(\left(\dfrac{9}{25}-2\cdot18\right):\left(3\dfrac{4}{5}+0.2\right)\)

\(=\left(\dfrac{9}{25}-36\right):\left(\dfrac{19}{5}+\dfrac{1}{5}\right)\)

\(=\left(\dfrac{9}{25}-\dfrac{900}{25}\right):\dfrac{20}{5}\)

\(=\dfrac{-891}{25}\cdot\dfrac{1}{4}\)

\(=-\dfrac{891}{100}\)

b) Ta có: \(\dfrac{3}{8}\cdot19\dfrac{1}{3}+\dfrac{3}{8}\cdot33\dfrac{1}{3}\)

\(=\dfrac{3}{8}\cdot\dfrac{58}{3}+\dfrac{3}{8}\cdot\dfrac{100}{3}\)

\(=\dfrac{58}{8}+\dfrac{100}{8}\)

\(=\dfrac{158}{8}=\dfrac{79}{4}\)

c) Ta có: \(15\cdot\left(-\dfrac{2}{3}\right)^2-\dfrac{7}{3}\)

\(=15\cdot\dfrac{4}{9}-\dfrac{7}{3}\)

\(=\dfrac{20}{3}-\dfrac{7}{3}\)

\(=\dfrac{13}{3}\)

d) Ta có: \(\dfrac{1}{2}\sqrt{64}-\sqrt{\dfrac{4}{25}}+\left(-1\right)^{2007}\)

\(=\dfrac{1}{2}\cdot8-\dfrac{2}{5}-1\)

\(=4-1-\dfrac{2}{5}\)

\(=3-\dfrac{2}{5}\)

\(=\dfrac{15}{5}-\dfrac{2}{5}=\dfrac{13}{5}\)

e) Ta có: \(\left(-\dfrac{5}{2}\right)^2:\left(-15\right)-\left(0.45+\dfrac{3}{4}\right)\cdot\left(-1\dfrac{5}{9}\right)\)

\(=\dfrac{25}{4}\cdot\dfrac{-1}{15}-\left(\dfrac{9}{20}+\dfrac{15}{20}\right)\cdot\dfrac{-14}{9}\)

\(=\dfrac{-25}{60}-\dfrac{24}{20}\cdot\dfrac{-14}{9}\)

\(=\dfrac{-25}{60}+\dfrac{28}{15}\)

\(=\dfrac{-25}{60}+\dfrac{112}{60}\)

\(=\dfrac{87}{60}=\dfrac{29}{20}\)

f) Ta có: \(\left(-\dfrac{1}{3}\right)-\left(-\dfrac{3}{5}\right)^0+\left(1-\dfrac{1}{2}\right)^2:2\)

\(=-\dfrac{1}{3}-1+\left(\dfrac{1}{2}\right)^2\cdot\dfrac{1}{2}\)

\(=\dfrac{-4}{3}+\dfrac{1}{4}\cdot\dfrac{1}{2}\)

\(=\dfrac{-4}{3}+\dfrac{1}{8}\)

\(=\dfrac{-32}{24}+\dfrac{3}{24}=\dfrac{-29}{24}\)

g) Ta có: \(\left(\dfrac{1}{2}\right)^{15}\cdot\left(\dfrac{1}{4}\right)^{20}\)

\(=\left(\dfrac{1}{2}\right)^{15}\cdot\left(\dfrac{1}{2}\right)^{40}\)

\(=\left(\dfrac{1}{2}\right)^{55}\)

\(=\dfrac{1}{2^{55}}\)

h) Ta có: \(\dfrac{5^4\cdot20}{25^5\cdot4^5}\)

\(=\dfrac{5^4\cdot5\cdot2^2}{5^{10}\cdot2^{10}}\)

\(=\dfrac{5^5}{5^{10}}\cdot\dfrac{2^2}{2^{10}}\)

\(=\dfrac{1}{5^5}\cdot\dfrac{1}{2^8}\)

\(=\dfrac{1}{800000}\)