K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 9 2018

\(=\sqrt{\dfrac{1}{9}\cdot\dfrac{9}{100}}\cdot64\\ =\sqrt{\dfrac{1}{100}}\cdot64\\ =\sqrt{\left(\dfrac{1}{10}\right)^2}\cdot64\\ =\dfrac{1}{10}\cdot64\\ =\dfrac{32}{5}\)

10 tháng 6 2021

`\sqrt{1/9}.\sqrt{0,81}.\sqrt{0,09}`

`=\sqrt{(1/3)^2}.\sqrt{(0,9)^2}.\sqrt{(0,3)^2}`

`=1/3*0,9.0,3`

`=3/10*3/10`

`=9/100*

10 tháng 6 2021

Em tưởng nhân lại với nhau ạ :v

AH
Akai Haruma
Giáo viên
7 tháng 7 2021

Bạn cần làm gì với biểu thức này thì bạn ghi rõ ra.

AH
Akai Haruma
Giáo viên
7 tháng 7 2021

Lời giải:
ĐKXĐ: $x>0; x\neq 1$

\(P=\frac{1}{\sqrt{x}+1}+\frac{x}{\sqrt{x}(1-\sqrt{x})}=\frac{1}{\sqrt{x}+1}+\frac{\sqrt{x}}{1-\sqrt{x}}\)

\(=\frac{1-\sqrt{x}+\sqrt{x}(\sqrt{x}+1)}{(\sqrt{x}+1)(1-\sqrt{x})}=\frac{x+1}{1-x}\)

b. Khi $x=\frac{1}{\sqrt{2}}$ thì:

\(P=\frac{\frac{1}{\sqrt{2}}+1}{1-\frac{1}{\sqrt{2}}}=3+2\sqrt{2}\)

b: Ta có: \(\sqrt[3]{-0.008}-\dfrac{1}{5}\cdot\sqrt[3]{64}+5\cdot\sqrt[3]{\left(-5\right)^3}\)

\(=-\dfrac{1}{5}-\dfrac{1}{5}\cdot4+5\cdot\left(-5\right)\)

\(=-\dfrac{1}{5}-\dfrac{4}{5}-25\)

=-26

31 tháng 8 2021

đề bài là 0.08 mà bạn

 

1 tháng 7 2021

a, ĐKXĐ : \(x\ge1\)

Ta có ; \(PT\Leftrightarrow\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}.\sqrt{9}\sqrt{x-1}+24.\sqrt{\dfrac{1}{64}}\sqrt{x-1}=-17\)

\(\Leftrightarrow\sqrt{x-1}\left(\dfrac{1}{2}-\dfrac{3}{2}\sqrt{9}+24\sqrt{\dfrac{1}{64}}\right)=-17\)

\(\Leftrightarrow-\sqrt{x-1}=-17\)

\(\Leftrightarrow\sqrt{x-1}=17\)

\(\Leftrightarrow x=290\left(TM\right)\)

Vậy ....

b, ĐKXĐ : \(x\ge3\)

Ta có : \(PT\Leftrightarrow x-3-7\sqrt{x-3}+12=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-3}=4\\\sqrt{x-3}=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=16\\x-3=9\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=19\\x=12\end{matrix}\right.\) ( TM )

Vậy ..

a) Ta có: \(\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}\sqrt{9x-9}+24\sqrt{\dfrac{x-1}{64}}=-17\)

\(\Leftrightarrow\dfrac{1}{2}\sqrt{x-1}-\dfrac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17\)

\(\Leftrightarrow-\sqrt{x-1}=-17\)

\(\Leftrightarrow x-1=17^2=289\)

hay x=290

Vậy: S={290}

b) Ta có: \(x-7\sqrt{x-3}+9=0\)

\(\Leftrightarrow x-7\sqrt{x-3}=-9\)

\(\Leftrightarrow x-3-2\cdot\sqrt{x-3}\cdot\dfrac{7}{2}+\dfrac{49}{4}=\dfrac{1}{4}\)

\(\Leftrightarrow\left(\sqrt{x-3}-\dfrac{7}{2}\right)^2=\dfrac{1}{4}\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-3}=4\\\sqrt{x-3}=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-3=16\\x-3=9\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=19\\x=12\end{matrix}\right.\)

Vậy: S={19;12}

AH
Akai Haruma
Giáo viên
3 tháng 8 2021

a. ĐKXĐ: $x\geq 1$

PT $\Leftrightarrow \frac{1}{2}\sqrt{x-1}-\frac{3}{2}.\sqrt{9}.\sqrt{x-1}+24.\sqrt{\frac{1}{64}}.\sqrt{x-1}=-17$

$\Leftrightarrow \frac{1}{2}\sqrt{x-1}-\frac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17$

$\Leftrightarrow -\sqrt{x-1}=-17$

$\Leftrightarrow \sqrt{x-1}=17$

$\Leftrightarrow x-1=289$

$\Leftrightarrow x=290$

b. ĐKXĐ: $x\geq \frac{1}{2}$

PT $\Leftrightarrow \sqrt{9}.\sqrt{2x-1}-0,5\sqrt{2x-1}+\frac{1}{2}.\sqrt{25}.\sqrt{2x-1}+\sqrt{49}.\sqrt{2x-1}=24$

$\Leftrightarrow 3\sqrt{2x-1}-0,5\sqrt{2x-1}+2,5\sqrt{2x-1}+7\sqrt{2x-1}=24$
$\Leftrightarrow 12\sqrt{2x-1}=24$

$\Leftrihgtarrow \sqrt{2x-1}=2$

$\Leftrightarrow x=2,5$ (tm)

 

AH
Akai Haruma
Giáo viên
3 tháng 8 2021

c. ĐKXĐ: $x\geq 2$

PT $\Leftrightarrow \sqrt{36}.\sqrt{x-2}-15\sqrt{\frac{1}{25}}\sqrt{x-2}=4(5+\sqrt{x-2})$

$\Leftrightarrow 6\sqrt{x-2}-3\sqrt{x-2}=20+4\sqrt{x-2}$

$\Leftrightarrow \sqrt{x-2}=-20< 0$ (vô lý)

Vậy pt vô nghiệm

a: Thay x=36 vào B, ta được:

\(B=\dfrac{36+2}{36+6+1}=\dfrac{38}{43}\)

b: Ta có: \(A=\dfrac{1}{\sqrt{x}-1}-\dfrac{x-\sqrt{x}+3}{x\sqrt{x}-1}\)

\(=\dfrac{x+\sqrt{x}+1-x+\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(=\dfrac{2}{x+\sqrt{x}+1}\)

`#3107.101107`

a)

`2/5 \sqrt{25} - 1/2 \sqrt{4}`

`= 2/5 * \sqrt{5^2} - 1/2 * \sqrt{2^2}`

`= 2/5*5 - 1/2*2`

`= 2 - 1`

`= 1`

b)

`0,5*\sqrt{0,09} + 5*\sqrt{0,81}`

`= 0,5*\sqrt{(0,3)^2} + 5*\sqrt{(0,9)^2}`

`= 0,5*0,3 + 5*0,9`

`= 0,15 + 4,5`

`= 4,65`

c)

`2/5\sqrt{25/36} - 5/2\sqrt{4/25}`

`= 2/5*\sqrt{(5^2)/(6^2)} - 5/2*\sqrt{(2^2)/(5^2)}`

`= 2/5*5/6 - 5/2*2/5`

`= 1/3 - 1`

`= -2/3`

d)

`-2 \sqrt{(-36)/(-16)} + 5 \sqrt{(-81)/(-25)}`

`= -2*\sqrt{36/16} + 5*\sqrt{81/25}`

`= -2*\sqrt{(6^2)/(4^2)} + 5*\sqrt{(9^2)/(5^2)}`

`= -2*6/4 + 5*9/5`

`= -3 + 9`

`= 6`

5 tháng 10 2023

Xem lại kết quả câu c nhé bạn!

1) \(\sqrt{1\dfrac{9}{16}}=\sqrt{\dfrac{25}{16}}=\dfrac{5}{4}\)

2) \(\dfrac{\sqrt{12.5}}{0.5}=\sqrt{\dfrac{12.5}{0.25}}=5\sqrt{2}\)

3) \(\sqrt{\dfrac{25}{64}}=\dfrac{5}{8}\)

4) \(\dfrac{\sqrt{230}}{\sqrt{2.3}}=\sqrt{\dfrac{230}{2.3}}=\sqrt{100}=10\)

5) \(\left(\sqrt{\dfrac{2}{3}}+\sqrt{\dfrac{50}{3}}-\sqrt{24}\right)\cdot\sqrt{6}\)

\(=\left(\dfrac{\sqrt{2}}{\sqrt{3}}+\dfrac{5\sqrt{2}}{\sqrt{3}}-2\sqrt{6}\right)\cdot\sqrt{6}\)

\(=\left(\dfrac{6\sqrt{2}}{\sqrt{3}}-2\sqrt{6}\right)\cdot\sqrt{6}\)

\(=0\cdot\sqrt{6}=0\)

2 tháng 9 2021

\(a.\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}+2=0\)( x lớn hơn hoặc =1)
\(\sqrt{x-1}+\sqrt{4\left(x-1\right)}-\sqrt{25\left(x-1\right)}\)+2=0
\(\sqrt{x-1}\left(1+\sqrt{4}-\sqrt{25}\right)=-2\)
\(\sqrt{x-1}\left(1+2-5\right)=-2\)
\(\sqrt{x-1}.\left(-2\right)=-2\)
\(\sqrt{x-1}=-2.2\)
\(\sqrt{x-1}-4\)(ko thỏa mãn)
b)
\(\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}\sqrt{9x-9}+24\sqrt{\dfrac{x-1}{64}}=-17\)
\(\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}\sqrt{9\left(x-1\right)}+24\dfrac{\sqrt{x-1}}{8}=-17\)
\(\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}.3\sqrt{x-1}+3\sqrt{x-1}=-17\)
\(\dfrac{1}{2}\sqrt{x-1}-\dfrac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17\)
\(\left(\dfrac{1}{2}-\dfrac{9}{2}+3\right)\sqrt{x-1}=-17\)
\(7\sqrt{x-1}=-17\)
\(\sqrt{x-1}=-\dfrac{17}{7}\)(ko thỏa mãn căn bậc 2 ko có số âm)

a: Ta có: \(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}+2=0\)

\(\Leftrightarrow\sqrt{x-1}+2\sqrt{x-1}-5\sqrt{x-1}=-2\)

\(\Leftrightarrow-2\sqrt{x-1}=-2\)

\(\Leftrightarrow x-1=1\)

hay x=2