K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
16 tháng 12 2021

Bài 1:

$2xy=(x+y)^2-(x^2+y^2)=4^2-10=6\Rightarrow xy=3$ 

$M=x^6+y^6=(x^3+y^3)^2-2x^3y^3$

$=[(x+y)^3-3xy(x+y)]^2-2(xy)^3=(4^3-3.3.4)^2-2.3^3=730$

 

AH
Akai Haruma
Giáo viên
16 tháng 12 2021

Bài 2:
$8x^3-32y-32x^2y+8x=0$

$\Leftrightarrow (8x^3+8x)-(32y+32x^2y)=0$

$\Leftrightarrow 8x(x^2+1)-32y(1+x^2)=0$

$\Leftrightarrow (8x-32y)(x^2+1)=0$
$\Rightarrow 8x-32y=0$ (do $x^2+1>0$ với mọi $x$)

$\Leftrightarrow x=4y$

Khi đó:

$M=\frac{3.4y+2y}{3.4y-2y}=\frac{14y}{10y}=\frac{14}{10}=\frac{7}{5}$

24 tháng 9 2021

\(a,x^4-2x^3+6x^2+x+14\\ =\left(x^4-3x^3+7x^2\right)+\left(x^3-3x^2+7x\right)+\left(2x^2-6x+14\right)\\ =\left(x^2-3x+7\right)\left(x^2+x+2\right):\left(x^2-3x+7\right)=x^2+x+2\)

Ta có \(x^2+x+2=x^2+x+\dfrac{1}{4}+\dfrac{7}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}>0\)

Vậy ...

\(b,A=x^3+3xy+y^3\\ A=\left(x+y\right)\left(x^2-xy+y^2\right)+3xy\\ A=x^2-xy+y^2+3xy\\ A=x^2+2xy+y^2=\left(x+y\right)^2=1\)

15 tháng 12 2021

\(a,n^3-2n^2+3n+3=n^3-n^2-n^2+n+2n-2+5\\ =\left(n-1\right)\left(n^2-n+2\right)+5\\ \Leftrightarrow n^3-2n^2+3n+3⋮\left(n-1\right)\\ \Leftrightarrow5⋮n-1\\ \Leftrightarrow n-1\in\left\{-5;-1;1;5\right\}\\ \Leftrightarrow n\in\left\{-4;0;2;6\right\}\)

 

15 tháng 12 2021

\(b,\Leftrightarrow x^4+6x^3+7x^2-6x+a\\ =x^4+3x^3-x^2+3x^3+9x^2-3x-x^2-3x+1-1+a\\ =\left(x^2+3x-1\right)\left(x^2+3x-1\right)-1+a\\ =\left(x^2+3x-1\right)^2+a-1\)

Để \(x^4+6x^3+7x^2-6x+a⋮x^2+3x-1\)

\(\Leftrightarrow a-1=0\Leftrightarrow a=1\)

 

10 tháng 1 2017

Thay x = -1 và đa thức, ta có:

(-1)2 + (-1)4 + (-1)6 + … + (-1)100 = Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

Vậy giá trị đa thức bằng 50 tại x = -1.

29 tháng 9 2019

7 tháng 1 2018

Ta thấy x=0 ko tm bài toán => x khác 0

Có : x^2-3x+1 = 0

=> x^2+1 = 3x

=> x^2+1/x = 3x/x = 3

=> x+1/x = 3

=> (x+1/x)^2 = 9

=> x^2+1/x^2+2=9

=> x^2+1/x^2 = 9-2 = 7

=> (x^2+1/x^2)^2 = 49

=> x^4+1/x^4+2 = 49

=> x^4+1/x^4 = 49-2 = 47

Vậy x^4+1/x^4 = 47

Tk mk nha

2 tháng 7 2023

hay quá

 

NV
13 tháng 12 2021

\(x^4-9x^3+21x^2+x+a=\left(x^2-8x+15\right)\left(x^2-x-2\right)+a+30\)

\(\Rightarrow a+30=0\Rightarrow a=-30\)

Ta có: \(M=x^4-xy^3+xy^3-y^4-1\)

\(=x^4-y^4-1\)

\(=\left(x^2-y^2\right)\left(x^2+y^2\right)-1\)

\(=\left(x+y\right)\left(x-y\right)\left(x^2+y^2\right)-1\)(1)

Thay x+y=0 vào biểu thức (1), ta được:

\(M=0-1=-1\)

Vậy: Khi x+y=0 thì M=-1

27 tháng 2 2021

`M=x^4-xy^3+xy^3-y^4-1`

`=x(x^3+y^3)-y^3(x+y)-1`

`=x(x+y)(x^2-xy+y^2)-0-1`(do `x+y=0`)

`=0-0-1`

`=-1`

19 tháng 12 2021

\(a,10x^2y-20xy^2=10xy\left(x-2y\right)\\ b,x^2-y^2+10y-25=x^2-\left(y^2-10y+25\right)=x^2-\left(y-5\right)^2=\left(x-y+5\right)\left(x+y-5\right)\\ c,x^2-y^2+3x-3y=\left(x-y\right)\left(x+y\right)+3\left(x-y\right)=\left(x-y\right)\left(x+y+3\right)\\ d,x^3+3x^2-16x-48=\left(x^3+3x^2\right)-\left(16x+48\right)=x^2\left(x+3\right)-16\left(x+3\right)=\left(x+3\right)\left(x^2-16\right)=\left(x+3\right)\left(x+4\right)\left(x-4\right)\)

\(e,9x^3+6x^2+x=x\left(9x^2+6x+1\right)=x\left(3x+1\right)^2\\ f,x^4+5x^3+15x-9=\left(x^4+5x^3-3x^2\right)+\left(3x^2+15x-9\right)=x^2\left(x^2+5x-3\right)+3\left(x^2+5x-3\right)=\left(x^2+3\right)\left(x^2+5x-3\right)\)

21 tháng 3 2019

b. Ta có:

A(x) + B(x) = x2 + 2x + 1 + x2 + 1 = 2x2 + 2x + 2 (0.5 điểm)

A(x) - B(x) = x2 + 2x + 1 - (x2 + 1) = 2x (0.5 điểm)