Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) (x-y)(x4+x3y+x2y2+xy3+y4) = x(x4+x3y+x2y2+xy3+y4)-y(x4+x3y+x2y2+xy3+y4) =(x5+x4y+x3y2+x2y2+xy4)-(x4y+x3y2+x2y2+xy4+y5) = x5+x4y+x3y2+x2y2+xy4-x4y-x3y2-x2y2-xy4-y5 =x5-y5⇒Điều cần chứng minh
Các câu b d tương tự
Thay x = 1, y = -3 vào biểu thức, ta có:
5 – 1.(-3)3 = 5 – 1.(-27) = 5 + 27 = 32
Vậy giá trị của biểu thức 5 – xy3 tại x = 1; y = -3 là 32.
\(\left(x-y\right)\left(x^4+x^3y+x^2y^2+xy^3+y^4\right)=x^5-y^5\)
Ta có VT:
\(\left(x-y\right)\left(x^4+x^3y+x^2y^2+xy^3+y^4\right)\)
\(=x.x^4+x.x^3y+x.x^2y^2+x.xy^3+x.y^4-y.x^4-y.x^3y-y.x^2y^2-y.xy^3-y.y^4\)
\(=x^5+x^4y+x^3y^2+x^2y^3+xy^4-x^4y-x^3y^2-x^2y^3-xy^4-y^5\)
\(=x^5-y^5\)
VT=VP
Vậy:...
a: \(A=0x^2y^4z+\dfrac{7}{2}x^2y^4z-\dfrac{2}{5}x^2y^4z=\dfrac{31}{10}x^2y^4z=\dfrac{31}{10}\cdot2^2\cdot\dfrac{1}{16}\cdot\left(-1\right)=-\dfrac{31}{40}\)
a: \(=\dfrac{7}{5}x^4z^3y=\dfrac{7}{5}\cdot2^4\cdot\left(-1\right)^3\cdot\dfrac{1}{2}=-\dfrac{56}{5}\)
b: \(=-xy^3\)
a. *Thay x = 1 vào biểu thức, ta có: 12 – 5.1 = 1 – 5 = -4
Vậy giá trị của biểu thức x2 – 5x tại x = 1 là -4.
*Thay x = -1 vào biểu thức, ta có: (-1)2 – 5.(-1) = 1 + 5 = 6
Vậy giá trị của biểu thức x2 – 5x tại x = 1 là 6.
*Thay x = 1/2 vào biểu thức, ta có:
Vậy giá trị của biểu thức x2 – 5x tại x = 1/2 là -9/4 .
b. Thay x = -3 và y = -5 vào biểu thức, ta có:
3.(-3)2 – (-3)(-5) = 3.9 – 15 = 12
Vậy giá trị của biểu thức 3x2 – xy tại x = -3; y = -5 là 12.
c. Thay x = 1, y = -3 vào biểu thức, ta có:
5 – 1.(-3)3 = 5 – 1.(-27) = 5 + 27 = 32
Vậy giá trị của biểu thức 5 – xy3 tại x = 1; y = -3 là 32.
a) Thay x = 1 vào biểu thức ta có:
12−5.1=1−5=−412−5.1=1−5=−4
Vậy giá trị của biểu thức x2−5xx2−5x tại x = 1 là -4
Thay x = -1 vào biểu thức ta có:
(−1)2−5.(−1)=1+5=6(−1)2−5.(−1)=1+5=6
Vậy giá trị của biểu thức x2−5xx2−5x tại x = -1 là 6
Thay x=12x=12 vào biểu thức ta có:
(12)2−5.12=14−104=−94(12)2−5.12=14−104=−94
Vậy giá trị của biểu thức x2−5xx2−5x tại x=12x=12 là −94−94
b) Thay x = -3 và y = - 5 vào biểu thức ta có:
3.(−3)2−(−3).(−5)=3.9−15=123.(−3)2−(−3).(−5)=3.9−15=12
Vậy giá trị của biểu thức 3x2−xy3x2−xy tại x = -3; y = -5 là 12
c) Thay x = 1, y = -2 vào biểu thức ta có:
5−1.(−3)3=5−1.(−27)=5+27=325−1.(−3)3=5−1.(−27)=5+27=32
Vậy giá trị của biểu thức 5−xy35−xy3 tại x = 1; y = -3 là 32
\(a,x^3\times y-2\) Tại x=-3 và y=2 thay vào biểu thức, ta có:
\(x^3\times y-2=\left(-3\right)^3\times2-2=\left(-27\right)\times2-2=\left(-54\right)-2=-56\)
\(b,x^3-5x+3\) Tại x=2 thay vào biểu thức, ta có:
\(x^3-5\times x+3=2^3-5\times2+3=8-10+3=1\)
\(c,x^2\times5x=5x^3\) Tại x=-1 thay vào biểu thức, ta có:
\(5x^3=5\times\left(-1\right)^3=5.\left(-1\right)=-5\)
\(d,5-xy^3\) Tại x=2, y=1 thay vào biểu thức, ta có:
\(5-xy^3=5-2\times\left(1\right)^3=5-2\times1=5-2=3\)
a)Tại x=-3,y=2 giá trị biểu thức là
\(-3^3\cdot2-2=-56\)
b)Tại x=2 giá trị biểu thức là
\(2^3-5\cdot2+3=8-10+3=1\)
c)Tại x=-1 giá trị biểu thức là
\(\left(-1\right)^2\cdot5\left(-1\right)=1\cdot\left(-5\right)=-5\)
d)Tại x=2,y=1 giá trị biểu thức là
\(5-2\cdot1^3=5-2=3\)
Bài 2: cho B= xy3-x2y. tính giá trị của B khi : a, x=1,y=1; b, x=-1,y=-1; c,x=1, y=-1; d, x=-1; y=1.
a: \(B=xy\left(y^2-x\right)=1\cdot1\cdot\left(1^2-1\right)=0\)
b: \(B=xy\left(y^2-x\right)=-1\cdot\left(-1\right)\cdot\left[\left(-1\right)^2-\left(-1\right)\right]=1\cdot\left(1+1\right)=2\)
c: \(B=xy\left(y^2-x\right)=1\cdot\left(-1\right)\cdot\left[\left(-1\right)^2-1\right]=0\)
d: \(B=xy\left(y^2-x\right)=-1\cdot1\cdot\left[1^2-\left(-1\right)^2\right]=0\)
Bài 2:
\(B=xy^3-x^2y=xy\left(y^2-x\right)\)
a) \(x=1;y=1\Rightarrow B=1.1.\left(1^2-1\right)=0\)
b) \(x=-1;y=-1\Rightarrow B=\left(-1\right).\left(-1\right).\left[\left(-1\right)^2-\left(-1\right)\right]=2\)
c) \(x=1;y=-1\Rightarrow B=1.\left(-1\right).\left[\left(-1\right)^2-\left(-1\right)\right]=-2\)
d) \(x=-1;y=1\Rightarrow B=\left(-1\right).1.\left[1^2-\left(-1\right)\right]=-2\)
Ta có: \(M=x^4-xy^3+xy^3-y^4-1\)
\(=x^4-y^4-1\)
\(=\left(x^2-y^2\right)\left(x^2+y^2\right)-1\)
\(=\left(x+y\right)\left(x-y\right)\left(x^2+y^2\right)-1\)(1)
Thay x+y=0 vào biểu thức (1), ta được:
\(M=0-1=-1\)
Vậy: Khi x+y=0 thì M=-1
`M=x^4-xy^3+xy^3-y^4-1`
`=x(x^3+y^3)-y^3(x+y)-1`
`=x(x+y)(x^2-xy+y^2)-0-1`(do `x+y=0`)
`=0-0-1`
`=-1`