\(1< \frac{6}{x}< 2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{GIẢI :}\)
ĐKXĐ : \(x\ne\pm1\)
\(\frac{2}{x+1}+\frac{x}{x-1}=\frac{\left[1\frac{1}{6}\cdot\frac{6}{7}+\left(\frac{1}{2}-\frac{1}{3}-\frac{1}{6}\right)\right]x+1}{x^2-1}\)
\(\Leftrightarrow\frac{2}{x+1}+\frac{x}{x-1}=\frac{x+1}{x^2-1}\)
\(\Leftrightarrow\frac{2}{x+1}+\frac{x}{x-1}-\frac{x+1}{x^2-1}=0\)
\(\Leftrightarrow\frac{2\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}+\frac{x\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}-\frac{x+1}{\left(x+1\right)\left(x-1\right)}=0\)
\(\Rightarrow\text{ }2\left(x-1\right)+x\left(x+1\right)-(x+1)=0\)
\(\Leftrightarrow\text{ }2\left(x-1\right)+\left(x+1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(2+x+1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x-1\text{ (loại)}\\x=-3\text{ (Chọn)}\end{cases}}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{-3\right\}\).
\(\frac{2}{x+1}+\frac{x}{x-1}=\frac{\left[1\frac{1}{6}.\frac{6}{7}+\left(\frac{1}{2}-\frac{1}{3}-\frac{1}{6}\right)\right]x+1}{x^2-1}\)\(đk:x\ne\pm1\)
\(< =>\frac{2\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}+\frac{x\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}=\frac{\left[\frac{7}{6}.\frac{6}{7}+\left(1\right)\right]x+1}{x^2-1}\)
\(< =>\frac{2x-2+x^2+x}{x^2+x-x-1}=\frac{2x+1}{x^2-1}\)\(< =>\frac{x^2+3x-2}{x^2-1}=\frac{2x-1}{x^2-1}\)
\(< =>x^2+2x-2=2x-1\)\(< =>x^2+2x-2x-2+1=0\)
\(< =>x^2-1=0< =>x^2=1\)\(< =>x=\pm1\)\(\left(ktmđk\right)\)
Vậy phương trình trên vô nghiệm
a)
\(\begin{array}{l}\frac{2}{9}:x + \frac{5}{6} = 0,5\\\frac{2}{9}:x = \frac{1}{2} - \frac{5}{6}\\\frac{2}{9}:x = \frac{3}{6} - \frac{5}{6}\\\frac{2}{9}:x = \frac{{ - 2}}{6}\\x = \frac{2}{9}:\frac{{ - 2}}{6}\\x = \frac{2}{9}.\frac{{ - 6}}{2}\\x = \frac{{ - 2}}{3}\end{array}\)
Vậy \(x = \frac{{ - 2}}{3}\).
b)
\(\begin{array}{l}\frac{3}{4} - \left( {x - \frac{2}{3}} \right) = 1\frac{1}{3}\\x - \frac{2}{3} = \frac{3}{4} - 1\frac{1}{3}\\x - \frac{2}{3} = \frac{3}{4} - \frac{4}{3}\\x - \frac{2}{3} = \frac{9}{{12}} - \frac{{16}}{{12}}\\x - \frac{2}{3} = \frac{{ - 7}}{{12}}\\x = \frac{{ - 7}}{{12}} + \frac{2}{3}\\x = \frac{{ - 7}}{{12}} + \frac{8}{{12}}\\x = \frac{1}{12}\end{array}\)
Vậy\(x = \frac{1}{12}\).
c)
\(\begin{array}{l}1\frac{1}{4}:\left( {x - \frac{2}{3}} \right) = 0,75\\\frac{5}{4}:\left( {x - \frac{2}{3}} \right) = \frac{3}{4}\\x - \frac{2}{3} = \frac{5}{4}:\frac{3}{4}\\x - \frac{2}{3} = \frac{5}{4}.\frac{4}{3}\\x - \frac{2}{3} = \frac{5}{3}\\x = \frac{5}{3} + \frac{2}{3}\\x = \frac{7}{3}\end{array}\)
Vậy \(x = \frac{7}{3}\).
d)
\(\begin{array}{l}\left( { - \frac{5}{6}x + \frac{5}{4}} \right):\frac{3}{2} = \frac{4}{3}\\ - \frac{5}{6}x + \frac{5}{4} = \frac{4}{3}.\frac{3}{2}\\ - \frac{5}{6}x + \frac{5}{4} = 2\\ - \frac{5}{6}x = 2 - \frac{5}{4}\\ - \frac{5}{6}x = \frac{8}{4} - \frac{5}{4}\\ - \frac{5}{6}x = \frac{3}{4}\\x = \frac{3}{4}:\left( { - \frac{5}{6}} \right)\\x = \frac{3}{4}.\frac{{ - 6}}{5}\\x = \frac{{ - 9}}{{10}}\end{array}\)
Vậy \(x = \frac{{ - 9}}{{10}}\).
\(\frac{4}{x^2-3x+2}-\frac{3}{2x^2-6x+1}+1=0\) \(Đkxđ:.......\)
Đặt: \(t=x^2-3x+2\left(t\ne0\right)\)
\(\Rightarrow2t=2x^2-6x+4\)
\(\Rightarrow2x^2-6x+1=2t-3\)
\(Pt:\Leftrightarrow\frac{4}{7}-\frac{3}{2t-3}+1=0\)
\(\Leftrightarrow4\left(2t-3\right)-3t+t\left(2t-3\right)=0\)
\(\Leftrightarrow8t-12-3t+2t^2-3t=0\)
\(\Leftrightarrow2t^2+2t-12=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=2\\t=-3\end{matrix}\right.\left(tm:\left[{}\begin{matrix}t\ne0\\t\ne\frac{3}{2}\end{matrix}\right.\right)\)
+ Với \(t=2\) thì: \(x^2-3x+2=2\)
\(\Leftrightarrow x\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\left(tmđk\right)\)
+ Với \(t=-3\) thì \(x^2-3x+2=-3\)
\(\Leftrightarrow x^2-2.\frac{3}{2}x+\frac{9}{4}+\frac{11}{4}=0\)
\(\Leftrightarrow\left(x-\frac{3}{2}\right)^2+\frac{11}{4}=0\left(vô-lí\right)\)
Vậy pt có nghiệm: \(\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)
Bài 2:
ĐKXĐ: $x\neq 1;2;3;6$
PT $\Leftrightarrow \frac{2}{x-2}+\frac{3}{x-3}=\frac{6}{x-6}-\frac{1}{x-1}$
$\Leftrightarrow \frac{5x-12}{x^2-5x+6}=\frac{5x}{x^2-7x+6}$
Đặt $x^2+6=t$ thì $\frac{5x-12}{t-5x}=\frac{5x}{t-7x}$
$\Rightarrow (5x-12)(t-7x)=5x(t-5x)$
$\Leftrightarrow 10x^2+12t+84x=0$
$\Leftrightarrow 10x^2+12(x^2+6)+84x=0$
$\Leftrightarrow 22x^2+84x+72=0$
$\Leftrightarrow 11x^2+42x+36=0$
$\Rightarrow x=\frac{-21\pm 3\sqrt{5}}{11}$
\(\frac{6}{3}\)
1 < 6/4 < 2
Học tốt