Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 6 :
a, Ta có : \(x+\frac{2x+\frac{x-1}{5}}{3}=1-\frac{3x-\frac{1-2x}{3}}{5}\)
=> \(\frac{15x}{15}+\frac{5\left(2x+\frac{x-1}{5}\right)}{15}=\frac{15}{15}-\frac{3\left(3x-\frac{1-2x}{3}\right)}{15}\)
=> \(15x+5\left(2x+\frac{x-1}{5}\right)=15-3\left(3x-\frac{1-2x}{3}\right)\)
=> \(15x+10x+\frac{5\left(x-1\right)}{5}=15-9x+\frac{3\left(1-2x\right)}{3}\)
=> \(15x+10x+x-1=15-9x+1-2x\)
=> \(15x+10x+x-1-15+9x-1+2x=0\)
=> \(37x-17=0\)
=> \(x=\frac{17}{37}\)
Vậy phương trình trên có nghiệm là \(S=\left\{\frac{17}{37}\right\}\)
Bài 7 :
a, Ta có : \(\frac{x-23}{24}+\frac{x-23}{25}=\frac{x-23}{26}+\frac{x-23}{27}\)
=> \(\frac{x-23}{24}+\frac{x-23}{25}-\frac{x-23}{26}-\frac{x-23}{27}=0\)
=> \(\left(x-23\right)\left(\frac{1}{24}+\frac{1}{25}-\frac{1}{26}-\frac{1}{27}\right)=0\)
=> \(x-23=0\)
=> \(x=23\)
Vậy phương trình trên có nghiệm là \(S=\left\{23\right\}\)
c, Ta có : \(\frac{x+1}{2004}+\frac{x+2}{2003}=\frac{x+3}{2002}+\frac{x+4}{2001}\)
=> \(\frac{x+1}{2004}+1+\frac{x+2}{2003}+1=\frac{x+3}{2002}+1+\frac{x+4}{2001}+1\)
=> \(\frac{x+2005}{2004}+\frac{x+2005}{2003}=\frac{x+2005}{2002}+\frac{x+2005}{2001}\)
=> \(\frac{x+2005}{2004}+\frac{x+2005}{2003}-\frac{x+2005}{2002}-\frac{x+2005}{2001}=0\)
=> \(\left(x+2005\right)\left(\frac{1}{2004}+\frac{1}{2003}-\frac{1}{2002}-\frac{1}{2001}\right)=0\)
=> \(x+2005=0\)
=> \(x=-2005\)
Vậy phương trình trên có nghiệm là \(S=\left\{-2005\right\}\)
e, Ta có : \(\frac{x-45}{55}+\frac{x-47}{53}=\frac{x-55}{45}+\frac{x-53}{47}\)
=> \(\frac{x-45}{55}-1+\frac{x-47}{53}-1=\frac{x-55}{45}-1+\frac{x-53}{47}-1\)
=> \(\frac{x-100}{55}+\frac{x-100}{53}=\frac{x-100}{45}+\frac{x-100}{47}\)
=> \(\frac{x-100}{55}+\frac{x-100}{53}-\frac{x-100}{45}-\frac{x-100}{47}=0\)
=> \(\left(x-100\right)\left(\frac{1}{55}+\frac{1}{53}-\frac{1}{45}-\frac{1}{47}\right)=0\)
=> \(x-100=0\)
Vậy phương trình trên có nghiệm là \(S=\left\{100\right\}\)
\(\frac{4}{x^2-3x+2}-\frac{3}{2x^2-6x+1}+1=0\) \(Đkxđ:.......\)
Đặt: \(t=x^2-3x+2\left(t\ne0\right)\)
\(\Rightarrow2t=2x^2-6x+4\)
\(\Rightarrow2x^2-6x+1=2t-3\)
\(Pt:\Leftrightarrow\frac{4}{7}-\frac{3}{2t-3}+1=0\)
\(\Leftrightarrow4\left(2t-3\right)-3t+t\left(2t-3\right)=0\)
\(\Leftrightarrow8t-12-3t+2t^2-3t=0\)
\(\Leftrightarrow2t^2+2t-12=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=2\\t=-3\end{matrix}\right.\left(tm:\left[{}\begin{matrix}t\ne0\\t\ne\frac{3}{2}\end{matrix}\right.\right)\)
+ Với \(t=2\) thì: \(x^2-3x+2=2\)
\(\Leftrightarrow x\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\left(tmđk\right)\)
+ Với \(t=-3\) thì \(x^2-3x+2=-3\)
\(\Leftrightarrow x^2-2.\frac{3}{2}x+\frac{9}{4}+\frac{11}{4}=0\)
\(\Leftrightarrow\left(x-\frac{3}{2}\right)^2+\frac{11}{4}=0\left(vô-lí\right)\)
Vậy pt có nghiệm: \(\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)
Bài 2:
ĐKXĐ: $x\neq 1;2;3;6$
PT $\Leftrightarrow \frac{2}{x-2}+\frac{3}{x-3}=\frac{6}{x-6}-\frac{1}{x-1}$
$\Leftrightarrow \frac{5x-12}{x^2-5x+6}=\frac{5x}{x^2-7x+6}$
Đặt $x^2+6=t$ thì $\frac{5x-12}{t-5x}=\frac{5x}{t-7x}$
$\Rightarrow (5x-12)(t-7x)=5x(t-5x)$
$\Leftrightarrow 10x^2+12t+84x=0$
$\Leftrightarrow 10x^2+12(x^2+6)+84x=0$
$\Leftrightarrow 22x^2+84x+72=0$
$\Leftrightarrow 11x^2+42x+36=0$
$\Rightarrow x=\frac{-21\pm 3\sqrt{5}}{11}$
1.
\(\frac{2x+3}{4}-\frac{5x+3}{6}=\frac{3-4x}{12}\)
\(MC:12\)
Quy đồng :
\(\Rightarrow\frac{3.\left(2x+3\right)}{12}-\left(\frac{2.\left(5x+3\right)}{12}\right)=\frac{3x-4}{12}\)
\(\frac{6x+9}{12}-\left(\frac{10x+6}{12}\right)=\frac{3x-4}{12}\)
\(\Leftrightarrow6x+9-\left(10x+6\right)=3x-4\)
\(\Leftrightarrow6x+9-3x=-4-9+16\)
\(\Leftrightarrow-7x=3\)
\(\Leftrightarrow x=\frac{-3}{7}\)
2.\(\frac{3.\left(2x+1\right)}{4}-1=\frac{15x-1}{10}\)
\(MC:20\)
Quy đồng :
\(\frac{15.\left(2x+1\right)}{20}-\frac{20}{20}=\frac{2.\left(15x-1\right)}{20}\)
\(\Leftrightarrow15\left(2x+1\right)-20=2\left(15x-1\right)\)
\(\Leftrightarrow30x+15-20=15x-2\)
\(\Leftrightarrow15x=3\)
\(\Leftrightarrow x=\frac{3}{15}=\frac{1}{5}\)
Đặt \(\hept{\begin{cases}\left(x+\frac{1}{x}\right)^3=a\\x^3+\frac{1}{x^3}=b\end{cases}}\)
Ta có
\(A=\frac{\left(x+\frac{1}{x}\right)^6-\left(x^6+2+\frac{1}{x^6}\right)}{\left(x+\frac{1}{x}\right)^3+x^3+\frac{1}{x^3}}=\frac{\left(x+\frac{1}{x}\right)^6-\left(x^3+\frac{1}{x^3}\right)^2}{\left(x+\frac{1}{x}\right)^3+x^3+\frac{1}{x^3}}\)
\(=\frac{a^2-b^2}{a+b}=a-b\)
\(=\left(x+\frac{1}{x}\right)^3-\left(x^3+\frac{1}{x^3}\right)\)
\(=x^3+3\left(x+\frac{1}{x}\right)+\frac{1}{x^3}-\left(x^3+\frac{1}{x^3}\right)=\frac{3x^2+3}{x}\)