tồn tại hay không tồn tại x,y nguyên dương sao cho \(x^3-y^3=61+xy\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử tồn tại các số nguyên dương x,y mà :
(x+y)(x-y)=2022 (1)
Không thể xảy ra trường hợp trong 2 số x và y có 1 số le và 1 số chẵn vì nếu xảy ra thì x+y va x-y đều là số lẻ nên tích (x+y)(x-y) là số lẻ trái với (1)
Vậy x,y phải cùng chẵn hoặc cùng lẻ . Khi đó tích x+y và x-y đều là số chẵn nên tích (x+y)(x-y) chia hết cho 4 mà 2022 lại không chia hết cho 4 suy ra không tồn tại 2 số nguyên dương x và y
Nhân từng vế của ba đẳng thức đã cho ta được :
xy . yz . zx = \(\frac{13}{15}.\frac{11}{3}.\left(-\frac{3}{13}\right)\)
\(\Leftrightarrow\) (xyz)2 = \(-\frac{11}{15}\) (1)
Đẳng thức (1) không xảy ra vì (xyz)2 > 0.
Vậy không tồn tại ba số hữu tỉ x,y,z thỏa mãn điều kiện đề bài.