K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 9 2018

Gọi A=1+3+32+...+32018

Ta có 3A = 3+...32019

=>2A = -1 + 32019

=> A = (32019-1)/2

14 tháng 9 2018

Gọi \(A=3^1+3^2+3^3+3^4+....+3^{2018}.\)

\(\Rightarrow3A=3^2+3^3+3^4+3^5+...+3^{2019}\)

\(3A-A=\left(3^2+3^3+3^4+3^5+...+2^{2019}\right)-\left(3^1+3^2+3^3+3^4+...+3^{2018}\right)\)

\(2A=3^{2019}-3\)

\(A=\frac{3^{2019}-3}{2}\)

\(\Rightarrow1+3^1+3^2+3^3+3^4+....+3^{2018}=1+\frac{3^{2019}-3}{2}\)

> Chúc bạn học tốt < 

26 tháng 9 2021

\(3B=3+3^2+3^3+...+3^{2019}\\ 2B=3^{2019}-1\\ B=\dfrac{3^{2019}-1}{2}\)

\(9B=3^2+3^4+...+3^{2020}\)

\(\Leftrightarrow8B=3^{2018}-1\)

\(\Leftrightarrow B=\dfrac{3^{2018}-1}{8}\)

10 tháng 7 2021

Đặt A = 1 + 32 + 34 +...+ 32018

\(\Rightarrow\) 32A = 9A = 32 + 34 + 36 + ... + 32020

\(\Rightarrow\) 9A - A = 8A = 32020 - 1

\(\Rightarrow\) A = \(\dfrac{3^{2020}-1}{8}\)

Vậy 1 + 32 + 34 +...+ 32018  =  \(\dfrac{3^{2020}-1}{8}\)

10 tháng 12 2020

A=32019+1+3+32+33+...+32018

⇒A=1+3+32+...+32018+32019 

⇒3A=3×(1+3+3^2+3^3+....+3^2019)

3A=3+3^2+3^3+....+3^2020

3A-A=(3+3^2+3^3+....+3^2020) -(1+3+3^2+....+3^2019)

2A= 3^2020-1

⇒ A =( 3^2020-1):2

A=32019+1+3+32+33+...+32018

⇒A=1+3+32+...+32018+32019 

⇒3A=3×(1+3+3^2+3^3+....+3^2019)

⇒3A=3+3^2+3^3+....+3^2020

⇒3A-A=(3+3^2+3^3+....+3^2020) -(1+3+3^2+....+3^2019)

⇒2A= 3^2020-1

⇒ A =( 3^2020-1):2

14 tháng 10 2021

\(A=1+3+3^2+3^3+...+3^{2018}+3^{2019}\)

\(=\left(1+3\right)+3^2\left(1+3\right)+...+3^{2018}\left(1+3\right)\)

\(=\left(1+3\right)\left(1+3^2+...+3^{2018}\right)\)

\(=4\left(1+3^2+...+3^{2018}\right)\) ⋮4

⇒A⋮4

16 tháng 8 2023

B = 1 + 32 + 34 + … + 32018

32.B = 32.( 1 + 32 + 34 + … + 32018)

9B = 32 + 34 + 36 + … + 32020

9B – B = (32 + 34 + 36 + … + 32020) – (1 + 32 + 34 + … + 32018)

8B = 32020 – 1

B = (32020 – 1) : 8.

Vậy B = (32020 – 1) : 8.

16 tháng 8 2023

tick cho mink nhé (●'◡'●)

\(A=\left(1+3\right)+3^2\left(1+3\right)+...+3^{2018}\left(1+3\right)\)

\(=4\left(1+3^2+...+3^{2018}\right)⋮4\)

6 tháng 11 2023

\(A=3^0+3^1+3^2+...+3^{138}\)

\(3\cdot A=3^1+3^2+3^3+...+3^{139}\)

\(A=(3^{139}-3^0):2\)

\(A=\left(3^{139}-1\right):2\)

6 tháng 11 2023

Đặt A = 1 + 3 + 3² + 3³ + ... + 3¹³⁷ + 3¹³⁸

⇒ 3A = 3 + 3² + 3³ + 3⁴ + ... + 3¹³⁸ + 3¹³⁹

⇒ 2A = 3A - A

= (3 + 3² + 3³ + 3⁴ + ... + 3¹³⁸ + 3¹³⁹) - (1 + 3 + 3² + 3³ + ... + 3¹³⁷ + 3¹³⁸)

= 3¹³⁹ - 1

⇒ A = (3¹³⁹ - 1)/3

⇒ 1 + 3 + 3¹ + 3² + 3³ + ... + 3¹³⁷ + 3¹³⁸

= (3¹³⁹ - 1)/3 + 3

= (3¹³⁹ + 2)/3

18 tháng 10 2023

a) \(A=2+2^2+2^3+...+2^{2017}\)

\(2A=2^2+2^3+2^4+...+2^{2018}\)

\(2A-A=\left(2^2+2^3+2^4+...+2^{2018}\right)-\left(2+2^2+2^3+...+2^{2017}\right)\)

\(A=2^{2018}-2\)

b) \(C=1+3^2+3^4+...+3^{2018}\)

\(3^2\cdot C=3^2+3^4+3^6+...+3^{2020}\)

\(9C-C=\left(3^2+3^4+3^6+...+3^{2020}\right)-\left(1+3^2+3^4+...+3^{2018}\right)\)

\(8C=3^{2020}-1\)

\(\Rightarrow C=\dfrac{3^{2020}-1}{8}\)

\(Toru\)

3 tháng 3 2019

ta có: \(\frac{31+32+35}{34}=\frac{31}{34}+\frac{32}{34}+\frac{35}{34}.\)

mà \(\frac{31}{32}>\frac{31}{34};\frac{32}{33}>\frac{32}{34}\)

\(\Rightarrow\frac{31}{32}+\frac{32}{33}+\frac{35}{34}>\frac{31}{34}+\frac{32}{34}+\frac{35}{34}=\frac{31+32+35}{34}\)

(không ghi cách giải)

đáp án : a > 5/6

chúc bn

hok tốt

(ko ghi đề)

đáp án : a > 5 / 6

chúc b

hk tốt