Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=1+2^1+2^2+...+2^{2017}\)
\(2A=2+2^2+2^3+...+2^{2018}\)
\(2A-A=2^{2018}-1hayA=2^{2018}-1\)
2; 3 tuong tu
1) A = 1 + 2 + 22 + 23 + .... + 22018
2A = 2 + 22 + 23 + 24 + ..... + 22019
2A - A = ( 2 + 22 + 23 + 24 + ..... + 22019 ) - ( 1 + 2 + 22 + 23 + .... + 22018 )
Vậy A = 22019 - 1
2) B = 1 + 3 + 32 + 33 + ..... + 32018
3A = 3 + 32 + 33 + ...... + 32019
3A - A = ( 3 + 32 + 33 + ...... + 32019 ) - ( 1 + 3 + 32 + 33 + ..... + 32018 )
2A = 32019 - 1
Vậy A = ( 32019 - 1 ) : 2
3) C = 1 + 4 + 42 + 43 + ...... + 42018
4A = 4 + 42 + 43 + ...... + 42019
4A - A = ( 4 + 42 + 43 + ...... + 42019 ) - ( 1 + 4 + 42 + 43 + ...... + 42018 )
3A = 42019 - 1
Vậy A = ( 42019 - 1 ) : 3
A=1+2+22+23+...+22018+22019
>2A=2(1+2+22+23+...+22018+22019)
=>2A=2+22+23+...+22018+22019
=>2A-A=(2+22+23+...+22019+22020)-(1 + 2 + 22 + 23 + ... + 22018 + 22019)
=>A=22020-1
B=1 + 32 + 34 + 36 +...+ 32018 + 32020
=>9B=3(1 + 32 + 34 + 36 +...+ 32018 + 32020)
=>9B=3+32 + 34 + 36 +...+ 32020 + 32022
=>9B-B=(3+32 + 34 + 36 +...+ 32018 + 32020)-(1 + 32 + 34 + 36 +...+ 32018 + 32020)
=.8B=32022-1
=>B=32022:8-1
A= 32019-32018+32017-32016+...+33-32+3-1
3A=32020-32019+32018-32017+...+34-33+32-3
4A=32020-1
4A+1=32020
X=2020
Ta có
\(A=3^{2019}-3^{2018}+3^{2017}-3^{2016}+...+3^3-3^2+3-1\)
\(\Rightarrow3A=3^{2020}-3^{2019}+3^{2018}-3^{2016}+....+3^2-3\)
\(\Rightarrow3A+A=4A=3^{2020}-1\)
\(\Rightarrow4A+1=3^x\)
\(\Rightarrow\left(3^{2020}-1\right)+1=3^x\)
\(\Rightarrow3^{2020}=3^x\)
\(\Rightarrow x=2020\)
Đề sai ! Sửa \(\frac{1}{2}\)thành \(\frac{3}{2}\)
Bài giải
\(A=\frac{3}{2}+\left(\frac{3}{2}\right)^2+\left(\frac{3}{2}\right)^3+\left(\frac{3}{2}\right)^4+...+\left(\frac{3}{2}\right)^{2018}\)
\(A=\frac{3}{2}+\frac{3^2}{2^2}+\frac{3^3}{2^3}+...+\frac{3^{2018}}{2^{2018}}\)
\(\frac{2}{3}A=1+\frac{3}{2}+\frac{3^2}{2^2}+...+\frac{3^{2017}}{2^{2017}}\)
\(A-\frac{2}{3}A=\frac{3^{2018}}{2^{2018}}-1\)
\(\frac{1}{3}A=\frac{3^{2018}}{2^{2018}}-1\)
\(A=\left(\frac{3^{2018}}{2^{2018}}-1\right)\cdot3=\frac{3^{2019}}{2^{2018}}-3\)
\(B=\left(\frac{3}{2}\right)^{2019}\text{ : }2=\frac{3^{2019}}{2^{2019}}\cdot\frac{1}{2}=\frac{3^{2019}}{2^{2020}}\)
\(B-A=\frac{3^{2019}}{2^{2020}}-\frac{3^{2019}}{2^{2018}}+3=3^{2019}\left(\frac{1}{2^{2018}}\cdot\frac{1}{2^4}-\frac{1}{2^{2018}}\right)+3=3^{2019}\left[\frac{1}{2^{2018}}\left(\frac{1}{2^4}-1\right)\right]+1\)
\(=3^{2019}\cdot\frac{1}{2^{2018}}\cdot\frac{-15}{16}+3\)
MÌNH CHỈ HUONWGS DẪN CÁCH LÀM THÔI NHÉ
P2 TÁCH SỐ
1x22 +2x32+3x42 +.....+2018x20192 + 2019x20202
= 1x2x3 - 1x2 + 2x3x4 - 2x3+ 3x4x5 - 3x4 + ... + 2018x2019x2020 - 2018x2019 +2019x2020x2021 - 2019x2020
=(1x2x3+3x4x5+....+2018x2019x2020+2019x2020x2021) - (1x2+2x3+..+2018x2019+2019x2020)
= S - P (*****)
Tính 4S => S=..... (1)
Tính 3P => P=..... (2)
TỪ (1) và (2) thay vào (*****) TA TÍNH ĐƯỢC A=.....
A=32019+1+3+32+33+...+32018
⇒A=1+3+32+...+32018+32019
⇒3A=3×(1+3+3^2+3^3+....+3^2019)
3A=3+3^2+3^3+....+3^2020
3A-A=(3+3^2+3^3+....+3^2020) -(1+3+3^2+....+3^2019)
2A= 3^2020-1
⇒ A =( 3^2020-1):2
A=32019+1+3+32+33+...+32018
⇒A=1+3+32+...+32018+32019
⇒3A=3×(1+3+3^2+3^3+....+3^2019)
⇒3A=3+3^2+3^3+....+3^2020
⇒3A-A=(3+3^2+3^3+....+3^2020) -(1+3+3^2+....+3^2019)
⇒2A= 3^2020-1
⇒ A =( 3^2020-1):2