a nhân a = 81
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,27^4\cdot81^{10}=\left(3^3\right)^4\cdot\left(3^4\right)^{10}=3^{12}\cdot3^{40}=3^{52}\\ b,=8^{31}\cdot32^5:64^4=\left(2^3\right)^{31}\cdot\left(2^5\right)^5:\left(2^6\right)^4=2^{93}\cdot2^{25}:2^{24}=2^{93+25-24}=2^{94}\)
a) Ta thấy đa thức \(f\left(x\right)=4x^2+81\) vô nghiệm (*).
Giả sử \(f\left(x\right)\) có thể phân tích được thành nhân tử, khi đó \(f\left(x\right)=\left(ax+b\right)\left(cx+d\right)\), suy ra \(f\) có nghiệm là \(x=-\dfrac{b}{a}\) hoặc \(x=-\dfrac{d}{c}\), mâu thuẫn với (*).
Vậy ta không thể phân tích \(f\left(x\right)\) thành nhân tử.
b) \(g\left(x\right)=x^7+x^2+1\)
\(g\left(x\right)=x^7-x+x^2+x+1\)
\(g\left(x\right)=x\left(x^6-1\right)+\left(x^2+x+1\right)\)
\(g\left(x\right)=x\left(x^3-1\right)\left(x^3+1\right)+\left(x^2+x+1\right)\)
\(g\left(x\right)=x\left(x^3+1\right)\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(g\left(x\right)=\left(x^2+x+1\right)\left(x^5-x^4+x^2-x+1\right)\)
Xét \(h\left(x\right)=x^5-x^4+x^2-x+1\), nếu \(h\left(x\right)\) phân tích được thành nhân tử thì nó có nghiệm hữu tỉ. Khi đó nó có dạng \(x=\dfrac{p}{q},\left(p,q\inℤ;\left(p,q\right)=1\right),p|1,q|1\) \(\Rightarrow x=\pm1\). Ta thấy \(h\left(1\right).h\left(-1\right)\ne0\) nên 2 nghiệm này không thỏa mãn. Vậy h(x) không có nghiệm hữu tỉ \(\Rightarrow\) g(x) không thể phân tích tiếp.
\(A=9^{25}.27^4.81^3=\left(3^2\right)^{25}.\left(3^3\right)^4.\left(3^4\right)^3=3^{50}.3^{12}.3^{12}=3^{74}\)
k mk nhé
=a4-81-(9a3-81a)
=(a2-9)(a2+9) -9a(a2-9)
=(a2-9)(a2-9a+9)
ĐẾN ĐÂY MÌNH CHỊU ,BẠN GIẢI TIẾP NHA
1) \(64-y^2=8^2-y^2=\left(8-y\right)\left(8+y\right)\)
2) \(81-x^2=9^2-x^2=\left(9-x\right)\left(9+x\right)\)
3) \(100-a^2=10^2-a^2=\left(10-a\right)\left(10+a\right)\)
4) \(144-b^2=12^2-b^2=\left(12-b\right)\left(12+b\right)\)
là 9 nhân 9 = 81 k nha
9nhân9 =81