cho tam giác abc vuông tại a ,đường cao.biết bc = 6,15cm ,ah = 3 cm.tính ab,ac.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tam giác ABC vuông tại A. Áp dụng Pitago
\(BC^2=AB^2+AC^2\)
\(\Rightarrow AC^2=BC^2-AB^2=25^2-15^2=400\left(cm\right)\)
=> AC = 20 (cm)
Tam giác ABC vuông tại A có AH là đường cao
\(\Rightarrow AB^2=BH.BC\)
\(\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{15^2}{25}=9\left(cm\right)\)
Tam giác ABH vuông tại H. Áp dụng Pitago
\(\Rightarrow AB^2=BH^2+AH^2\)
\(\Rightarrow AH^2=AB^2-BH^2=15^2-9^2=144\left(cm\right)\)
=> AH = 12 (cm)
Tam giác ABC vuông tại A. Áp dụng Pitago
BC2=AB2+AC2BC2=AB2+AC2
⇒AC2=BC2−AB2=252−152=400(cm)⇒AC2=BC2−AB2=252−152=400(cm)
=> AC = 20 (cm)
Tam giác ABC vuông tại A có AH là đường cao
⇒AB2=BH.BC⇒AB2=BH.BC
⇒BH=AB2BC=15225=9(cm)
=1/6^2 + 1/8^2 =25/576
=> AH^2 =576/25
=> AH=24/5
Áp dụng định lí Pytago vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)
\(\Leftrightarrow\dfrac{1}{AH^2}=\dfrac{1}{6^2}+\dfrac{1}{8^2}=\dfrac{100}{48^2}\)
\(\Leftrightarrow AH^2=\left(\dfrac{48}{10}\right)^2\)
hay AH=4,8cm
Vậy: AH=4,8cm
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AB^2=BH\cdot BC\)
\(\Leftrightarrow AB^2=4\cdot9=36\)
hay AB=6(cm)
Vậy: AB=6cm
Áp dụng định lý Pytago ta có :
\(BC^2=12^2+16^2=400=20^2\)
BC > 0 nên BC = 20 ( cm )
Lại có :
\(2S_{ABC}=AB.AC=BC.AH\)
\(\Leftrightarrow192=20AH\)
AH = 9,6 ( cm )
Vậy ...
Lời giải:
Vì $AB: AC=3:7$ nên đặt $AB=3a; AC=7a$. Áp dụng hệ thức lượng trong tam giác vuông:
$\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}$
$\frac{1}{42^2}=\frac{1}{(3a)^2}+\frac{1}{(7a)^2}$
$\frac{1}{42^2}=\frac{58}{441a^2}$
$\Rightarrow a=2\sqrt{58}$ (cm)
$AB=3a=6\sqrt{58}$ (cm)
$BH=\sqrt{AB^2-AH^2}=\sqrt{(6\sqrt{58})^2-42^2}=18$ (cm)
Chu vi $ABH$: $AB+BH+AH=6\sqrt{58}+18+42=60+6\sqrt{58}$ (cm)
$AC=7a=14\sqrt{58}$ (cm)
$HC=\sqrt{AC^2-AH^2}=\sqrt{(14\sqrt{58})^2-42^2}=98$ (cm)
$S_{AHC}=\frac{AH.HC}{2}=\frac{42.98}{2}=2058$ (cm vuông)
\(\left\{{}\begin{matrix}HB\cdot HC=9\\HB+HC=6.15\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(6.15-HB\right)\cdot HB=9\\HB+HC=6.15\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}HB^2-6.15HB+9=0\\HB+HC=6.15\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}HB=2,4\left(cm\right)\\HC=3.75\left(cm\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}AB=\dfrac{3\sqrt{41}}{5}\left(cm\right)\\AC=\dfrac{3\sqrt{41}}{4}\left(cm\right)\end{matrix}\right.\)