cho tam giác abc vuông tại a ,đường cao.biết bc = 6,15cm ,ah = 3 cm.tính ab,ac.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Tam giác ABC vuông tại A. Áp dụng Pitago
\(BC^2=AB^2+AC^2\)
\(\Rightarrow AC^2=BC^2-AB^2=25^2-15^2=400\left(cm\right)\)
=> AC = 20 (cm)
Tam giác ABC vuông tại A có AH là đường cao
\(\Rightarrow AB^2=BH.BC\)
\(\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{15^2}{25}=9\left(cm\right)\)
Tam giác ABH vuông tại H. Áp dụng Pitago
\(\Rightarrow AB^2=BH^2+AH^2\)
\(\Rightarrow AH^2=AB^2-BH^2=15^2-9^2=144\left(cm\right)\)
=> AH = 12 (cm)
Tam giác ABC vuông tại A. Áp dụng Pitago
BC2=AB2+AC2BC2=AB2+AC2
⇒AC2=BC2−AB2=252−152=400(cm)⇒AC2=BC2−AB2=252−152=400(cm)
=> AC = 20 (cm)
Tam giác ABC vuông tại A có AH là đường cao
⇒AB2=BH.BC⇒AB2=BH.BC
⇒BH=AB2BC=15225=9(cm)
![](https://rs.olm.vn/images/avt/0.png?1311)
=1/6^2 + 1/8^2 =25/576
=> AH^2 =576/25
=> AH=24/5
Áp dụng định lí Pytago vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)
\(\Leftrightarrow\dfrac{1}{AH^2}=\dfrac{1}{6^2}+\dfrac{1}{8^2}=\dfrac{100}{48^2}\)
\(\Leftrightarrow AH^2=\left(\dfrac{48}{10}\right)^2\)
hay AH=4,8cm
Vậy: AH=4,8cm
![](https://rs.olm.vn/images/avt/0.png?1311)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AB^2=BH\cdot BC\)
\(\Leftrightarrow AB^2=4\cdot9=36\)
hay AB=6(cm)
Vậy: AB=6cm
![](https://rs.olm.vn/images/avt/0.png?1311)
Áp dụng định lý Pytago ta có :
\(BC^2=12^2+16^2=400=20^2\)
BC > 0 nên BC = 20 ( cm )
Lại có :
\(2S_{ABC}=AB.AC=BC.AH\)
\(\Leftrightarrow192=20AH\)
AH = 9,6 ( cm )
Vậy ...
![](https://rs.olm.vn/images/avt/0.png?1311)
Lời giải:
Vì $AB: AC=3:7$ nên đặt $AB=3a; AC=7a$. Áp dụng hệ thức lượng trong tam giác vuông:
$\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}$
$\frac{1}{42^2}=\frac{1}{(3a)^2}+\frac{1}{(7a)^2}$
$\frac{1}{42^2}=\frac{58}{441a^2}$
$\Rightarrow a=2\sqrt{58}$ (cm)
$AB=3a=6\sqrt{58}$ (cm)
$BH=\sqrt{AB^2-AH^2}=\sqrt{(6\sqrt{58})^2-42^2}=18$ (cm)
Chu vi $ABH$: $AB+BH+AH=6\sqrt{58}+18+42=60+6\sqrt{58}$ (cm)
$AC=7a=14\sqrt{58}$ (cm)
$HC=\sqrt{AC^2-AH^2}=\sqrt{(14\sqrt{58})^2-42^2}=98$ (cm)
$S_{AHC}=\frac{AH.HC}{2}=\frac{42.98}{2}=2058$ (cm vuông)
\(\left\{{}\begin{matrix}HB\cdot HC=9\\HB+HC=6.15\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(6.15-HB\right)\cdot HB=9\\HB+HC=6.15\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}HB^2-6.15HB+9=0\\HB+HC=6.15\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}HB=2,4\left(cm\right)\\HC=3.75\left(cm\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}AB=\dfrac{3\sqrt{41}}{5}\left(cm\right)\\AC=\dfrac{3\sqrt{41}}{4}\left(cm\right)\end{matrix}\right.\)