K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\left\{{}\begin{matrix}HB\cdot HC=9\\HB+HC=6.15\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(6.15-HB\right)\cdot HB=9\\HB+HC=6.15\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}HB^2-6.15HB+9=0\\HB+HC=6.15\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}HB=2,4\left(cm\right)\\HC=3.75\left(cm\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}AB=\dfrac{3\sqrt{41}}{5}\left(cm\right)\\AC=\dfrac{3\sqrt{41}}{4}\left(cm\right)\end{matrix}\right.\)

26 tháng 5 2022

tham khảo:

hình bạn tự vẽ nha !

26 tháng 5 2022

https://hoidap247.com/cau-hoi/1022947

16 tháng 9 2021

Tam giác ABC vuông tại A. Áp dụng Pitago

\(BC^2=AB^2+AC^2\)

\(\Rightarrow AC^2=BC^2-AB^2=25^2-15^2=400\left(cm\right)\)

=> AC = 20 (cm)

Tam giác ABC vuông tại A có AH là đường cao

\(\Rightarrow AB^2=BH.BC\)

\(\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{15^2}{25}=9\left(cm\right)\)

Tam giác ABH vuông tại H. Áp dụng Pitago

\(\Rightarrow AB^2=BH^2+AH^2\)

\(\Rightarrow AH^2=AB^2-BH^2=15^2-9^2=144\left(cm\right)\)

=> AH = 12 (cm)

2 tháng 11 2021

Tam giác ABC vuông tại A. Áp dụng Pitago

BC2=AB2+AC2BC2=AB2+AC2

⇒AC2=BC2−AB2=252−152=400(cm)⇒AC2=BC2−AB2=252−152=400(cm)

=> AC = 20 (cm)

Tam giác ABC vuông tại A có AH là đường cao

⇒AB2=BH.BC⇒AB2=BH.BC

⇒BH=AB2BC=15225=9(cm)

21 tháng 11 2021

Tham khảo ???

21 tháng 11 2021

đề thiếu mà sao làm dc?

14 tháng 6 2017

Áp dụng định lý Pytago ta có :

\(BC^2=12^2+16^2=400=20^2\)

BC > 0 nên BC = 20 ( cm )

Lại có :

\(2S_{ABC}=AB.AC=BC.AH\)

\(\Leftrightarrow192=20AH\)

AH = 9,6 ( cm )

Vậy ...

AH
Akai Haruma
Giáo viên
11 tháng 9 2021

Lời giải:

Vì $AB: AC=3:7$ nên đặt $AB=3a; AC=7a$. Áp dụng hệ thức lượng trong tam giác vuông:

$\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}$

$\frac{1}{42^2}=\frac{1}{(3a)^2}+\frac{1}{(7a)^2}$

$\frac{1}{42^2}=\frac{58}{441a^2}$

$\Rightarrow a=2\sqrt{58}$ (cm) 

$AB=3a=6\sqrt{58}$ (cm)

$BH=\sqrt{AB^2-AH^2}=\sqrt{(6\sqrt{58})^2-42^2}=18$ (cm)

Chu vi $ABH$: $AB+BH+AH=6\sqrt{58}+18+42=60+6\sqrt{58}$ (cm)

$AC=7a=14\sqrt{58}$ (cm)

$HC=\sqrt{AC^2-AH^2}=\sqrt{(14\sqrt{58})^2-42^2}=98$ (cm)

$S_{AHC}=\frac{AH.HC}{2}=\frac{42.98}{2}=2058$ (cm vuông)

AH
Akai Haruma
Giáo viên
11 tháng 9 2021

Hình vẽ:

6 tháng 7 2023

1

\(\dfrac{AB}{AC}=\dfrac{3}{4}\Rightarrow AB=\dfrac{3}{.4}AC\)

Theo pytago xét tam giác ABC vuông tại A có:

\(\sqrt{AB^2+AC^2}=BC^2\\ \Rightarrow\sqrt{\left(\dfrac{3}{4}AC\right)^2+AC^2}=10\\ \Rightarrow AC=8\\ \Rightarrow AB=\dfrac{3.8}{4}=6\)

Theo hệ thức lượng xét tam giác ABC vuông tại A, đường cao AH có:

\(AB^2=BH.BC\\ \Leftrightarrow BH=\dfrac{AH^2}{BC}=\dfrac{6^2}{10}=3,6\)

2

\(\dfrac{AB}{AC}=\dfrac{27}{4}\Rightarrow AB=\dfrac{27}{4}AC\)

\(BC=\sqrt{AB^2+AC^2}=\sqrt{\left(\dfrac{27}{4}AC\right)^2+AC^2}=\dfrac{\sqrt{745}AC}{4}\) ( Theo pytago trong tam giác ABC vuông tại A)

Theo hệ thức lượng trong tam giác ABC vuông tại A, đường cao AH có:

\(AH.BC=AB.AC\\ \Leftrightarrow33,6.\dfrac{\sqrt{745}}{4}AC=\dfrac{27}{4}AC.AC\\ \Rightarrow AC=\dfrac{56\sqrt{745}}{45}\)

\(\Rightarrow\left\{{}\begin{matrix}AB=\dfrac{27}{4}.\dfrac{56\sqrt{745}}{45}=\dfrac{42\sqrt{745}}{5}\\BC=\dfrac{\sqrt{745}}{4}.\dfrac{56\sqrt{745}}{45}=\dfrac{2086}{9}\end{matrix}\right.\)

Vậy \(\left\{{}\begin{matrix}AC\approx33,97\\AB\approx229,28\\BC\approx231,78\end{matrix}\right.\)

3

`BC=HB+HC=36+64=100`

Theo hệ thức lượng có (trong tam giác ABC vuông tại A đường cao AH):

\(AH^2=HB.HC\\ \Rightarrow AH=\sqrt{36.64}=48\)

\(AB=\sqrt{HB.BC}=\sqrt{36.100}=60\\ AC=\sqrt{HC.BC}=\sqrt{64.100}=80\)

2 tháng 12 2021

\(1,HC=\dfrac{AH^2}{BH}=\dfrac{256}{9}\\ \Rightarrow AB=\sqrt{BH\cdot BC}=\sqrt{\left(\dfrac{256}{9}+9\right)9}=\sqrt{337}\\ 2,BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\\ \Rightarrow BH=\dfrac{AB^2}{BC}=6,4\left(cm\right)\\ 3,AC=\sqrt{BC^2-AB^2}=9\\ \Rightarrow CH=\dfrac{AC^2}{BC}=5,4\\ 4,AC=\sqrt{BC\cdot CH}=\sqrt{9\left(6+9\right)}=3\sqrt{15}\\ 5,AC=\sqrt{BC^2-AB^2}=4\sqrt{7}\left(cm\right)\\ \Rightarrow AH=\dfrac{AB\cdot AC}{BC}=3\sqrt{7}\left(cm\right)\\ 6,AC=\sqrt{BC\cdot CH}=\sqrt{12\left(12+8\right)}=4\sqrt{15}\left(cm\right)\)

2 tháng 12 2021

Anh ơi

4 tháng 8 2016
Câu 1: Áp dụng đ/lí pytago vào tam giác ABC vuông tại A CÓ:AB^2+AB^2=BC^2 Hay: 12^2+5^2=169=BC^2 => BC=13cm ÁP dụng hệ thức ta có: +) AB^2=BH.BC Hay: BH=AB^2:BC=144:13 =144/13(cm) Ta có CH=BC-BH=13-144/13=25/13(cm)
4 tháng 8 2016

Bạn chỉ cần áp dụng hệ thức lượng là đc rồi o0o